首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular proliferation of HIV-1 requires the cooperative assistance of both the CCR5 and CD4 receptors. Our medicinal chemistry efforts in this area have resulted in the identification of N-alkyl piperidine sulfones as CCR5 antagonists. These compounds display potent binding and show antiviral properties in HIV-1 spread cell-based assays.  相似文献   

2.
The chemokine receptors CCR5 and CXCR4 function as the principal coreceptors for human immunodeficiency virus type 1 (HIV-1). Coreceptor function has also been demonstrated for a variety of related receptors in vitro. The relative contributions of CCR5, CXCR4, and other putative coreceptors to HIV-1 disease in vivo have yet to be defined. In this study, we used sequential primary isolates and recombinant strains of HIV-1 to demonstrate that CXCR4-using (X4) viruses emerging in association with disease progression are highly pathogenic in ex vivo lymphoid tissues compared to CXCR4-independent viruses. Furthermore, synthetic receptor antagonists that specifically block CXCR4-mediated entry dramatically suppressed the depletion of CD4(+) T cells by recombinant and clinically derived X4 HIV-1 isolates. Moreover, in vitro specificity for the additional coreceptors CCR3, CCR8, BOB, and Bonzo did not augment cytopathicity or diminish sensitivity toward CXCR4 antagonists in lymphoid tissues. These data provide strong evidence to support the concept that adaptation to CXCR4 specificity in vivo accelerates HIV-1 disease progression. Thus, therapeutic intervention targeting the interaction of HIV-1 gp120 with CXCR4 may be highly valuable for suppressing the pathogenic effects of late-stage viruses.  相似文献   

3.
趋化因子受体 CCR5 亲合短肽的筛选   总被引:4,自引:0,他引:4  
趋化因子受体 5 (CCR5) 是 HIV-1 与宿主细胞结合的辅助因子之一,其功能缺失或被 CCR5 拮抗剂封闭则会阻止 HIV-1 感染细胞 . 为得到与 CCR5 特异结合的肽类拮抗剂,采用噬菌体展示技术,以稳定表达 CCR5 的 CHO 细胞 (CHO/CCR5) 作为靶标,通过噬菌体随机 12 肽库筛选与 CCR5 特异结合的多肽;经过四轮筛选后,挑选 20 个阳性噬菌体克隆进行测序,从中得到 11 个含有 AFDWTFVPSLIL 序列的小分子肽 . 含该序列的噬菌体能与抗人 CCR5 单抗 (2D7) 竞争性结合 CCR5 ,且合成肽 AFDWTFVPSLIL 对趋化因子 RANTES 与 CHO/CCR5 的结合具有明显的抑制作用,初步证明该小肽与 CCR5 具有特异性结合作用 .  相似文献   

4.
CXCR4-using (X4) human immunodeficiency virus type 1 (HIV-1) variants evolve from CCR5-restricted (R5) HIV-1 variants. Early after their first appearance in vivo, X4 HIV-1 variants additionally use CCR5. The ability to use CCR5 in addition to CXCR4 is generally lost late in infection. Here we studied whether this evolution of the coreceptor repertoire is also reflected in a changing sensitivity of X4 variants to CXCR4 antagonists such as peptide T22 and the synthetic compound AMD3100. We observed differences in the concentrations of CXCR4 antagonists needed to suppress replication of X4 HIV variants from different patients. In general, late X4 HIV variants were less sensitive to AMD3100 than were early R5X4 HIV variants. The differences between early R5X4 HIV variants and late X4 variants were less pronounced for T22-mediated inhibition. These results suggest an ongoing evolution of X4 virus variants toward more efficient usage of the cellular entry complex.  相似文献   

5.
A novel series of CCR5 antagonists were identified based on the redesign of Schering C. An SAR was established based on inhibition of CCR5 (RANTES) binding and these compounds exhibited potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells.  相似文献   

6.
Replacement of the 5-oxopyrrolidin-3-yl fragment in the previously reported lead structure with a 1-acetylpiperidin-4-yl group led to the discovery of a novel series of potent CCR5 antagonists. Introduction of small hydrophobic substituents on the central phenyl ring increased the binding affinity, providing low to sub-nanomolar CCR5 antagonists. The selected compound 11f showed excellent antiviral activity against CCR5-using HIV-1 replication in human peripheral blood mononuclear cells (EC50=0.59 nM) and an acceptable pharmacokinetic profile in dogs.  相似文献   

7.
HIV-1 R5 viruses predominantly use CCR5 as a coreceptor to infect CD4(+) T cells and macrophages. While R5 viruses generally infect CD4(+) T cells, research over the past few years has demonstrated that they vary extensively in their capacity to infect macrophages. Thus, R5 variants that are highly macrophage tropic have been detected in late disease and are prominent in brain tissue of subjects with neurological complications. Other R5 variants that are less sensitive to CCR5 antagonists and use CCR5 differently have also been identified in late disease. These latter variants have faster replication kinetics and may contribute to CD4 T-cell depletion. In addition, R5 viruses are highly variable in many other properties, including sensitivity to neutralizing antibodies and inhibitors that block HIV-1 entry into cells. Here, we review what is currently known about how HIV-1 R5 viruses vary in cell tropism and other properties, and discuss the implications of this variation on transmission, pathogenesis, therapy and vaccines.  相似文献   

8.
Mulampaka SN  Dixit NM 《PloS one》2011,6(5):e19941
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as ~20 μm(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.  相似文献   

9.
CCR5及其拮抗剂的研究进展   总被引:2,自引:0,他引:2  
趋化因子CCR5,作为G蛋白偶联因子超家族(GPCR)成员的细胞膜蛋白,是HIV-1入侵机体细胞的主要辅助受体之一。以CCR5为靶点的HIV-1受体拮抗剂越来越受关注,主要有趋化因子衍生物、非肽类小分子化合物、单克隆抗体、肽类化合物等四类。这些抗病毒活性强、高亲和力的CCR5拮抗剂,已有一部分进入了临床试验阶段。本文对近年来CCR5拮抗剂的相关研究进展进行综述。  相似文献   

10.
Little is known about the in vivo development of resistance to human immunodeficiency virus type 1 (HIV-1) CCR5 antagonists. We studied 29 subjects with virologic failure from a phase IIb study of the CCR5 antagonist vicriviroc (VCV) and identified one individual with HIV-1 subtype C who developed VCV resistance. Studies with chimeric envelopes demonstrated that changes within the V3 loop were sufficient to confer VCV resistance. Resistant virus showed VCV-enhanced replication, cross-resistance to another CCR5 antagonist, TAK779, and increased sensitivity to aminooxypentane-RANTES and the CCR5 monoclonal antibody HGS004. Pretreatment V3 loop sequences reemerged following VCV discontinuation, implying that VCV resistance has associated fitness costs.  相似文献   

11.
CCR5 is a chemokine receptor that mediates entry of human immunodeficiency virus-1 (HIV-1). Two monoclonal antibodies (mAbs) that block HIV-1 entry, 3A9 and 5C7, were used to select peptide mimotopes of sequences on CCR5 from phage displayed peptide libraries. The selected mimotofpes comprised motifs at the N-terminus and on the first and third extracellular loops (ECL1 and ECL3) of CCR5. Amino acids in these motifs were exchanged for alanines by site-directed mutagenesis (sdm) in the cDNA for human CCR5. Ensuing effects on antibody binding to CCR5, cellular entry of HIV-1 and chemokine-induced signalling were analysed by transfection of mutant cDNAs into HEK293.CD4 cells. For both mAbs, fluorescence-activated cell sorting analysis was used to define overlapping conformational epitopes on CCR5 at the N-terminus, on ECL1 and ECL3. Mutation of the N-terminal motif 10YD11 prevented HIV-1 entry into transfected cells as judged by single round infection assays with R5 and R5X4 HIV-1 isolates, as did mutation of the motif 96FG97 in ECL1, whereas mutation of the motif 274RLD276 in ECL3 had only a minor effect. None of the motifs in CCR5 relevant to HIV-1 entry disrupted chemokine-induced signalling. Thus, peptide mimotopes of conformational contact sites of CCR5 with the paratope of mAbs 3A9 and 5C7 represent sites on CCR5 that are essential for HIV-1 entry. Structural knowledge of these mimotopes could help elucidate the nature of the interaction between CCR5 and HIV-1, and thus the derivation of specific inhibitors of entry of HIV-1 into susceptible cells without interference with chemokine signalling.  相似文献   

12.
Kang Y  Wu Z  Lau TC  Lu X  Liu L  Cheung AK  Tan Z  Ng J  Liang J  Wang H  Li S  Zheng B  Li B  Chen L  Chen Z 《The Journal of biological chemistry》2012,287(20):16499-16509
Regardless of the route of transmission, R5-tropic HIV-1 predominates early in infection, rendering C-C chemokine receptor type 5 (CCR5) antagonists as attractive agents not only for antiretroviral therapy but also for prevention. Here, we report the specificity, potency, and underlying mechanism of action of a novel small molecule CCR5 antagonist, TD-0680. TD-0680 displayed the greatest potency against a diverse group of R5-tropic HIV-1 and SIV strains when compared with its prodrug, TD-0232, the Food and Drug Administration-approved CCR5 antagonist Maraviroc, and TAK-779, with EC(50) values in the subnanomolar range (0.09-2.29 nm). Importantly, TD-0680 was equally potent at blocking envelope-mediated cell-cell fusion and cell-mediated viral transmission as well as the replication of a TAK-779/Maraviroc-resistant HIV-1 variant. Interestingly, TD-0232 and TD-0680 functioned differently despite binding to a similar transmembrane pocket of CCR5. Site-directed mutagenesis, drug combination, and antibody blocking assays identified a novel mechanism of action of TD-0680. In addition to binding to the transmembrane pocket, the unique exo configuration of this molecule protrudes and sterically blocks access to the extracellular loop 2 (ECL2) region of CCR5, thereby interrupting the interaction between virus and its co-receptor more effectively. This mechanism of action was supported by the observations of similar TD-0680 potency against CD4-dependent and -independent SIV strains and by molecular docking analysis using a CCR5 model. TD-0680, therefore, merits development as an anti-HIV-1 agent for therapeutic purposes and/or as a topical microbicide for the prevention of sexual transmission of R5-tropic HIV-1.  相似文献   

13.

Background

Entry of human immunodeficiency virus type 1 (HIV-1) into cells involves the interaction of the viral gp120 envelope glycoproteins (Env) with cellular CD4 and a secondary coreceptor, which is typically one of the chemokine receptors CCR5 or CXCR4. CCR5-using (R5) HIV-1 strains that display reduced sensitivity to CCR5 antagonists can use antagonist-bound CCR5 for entry. In this study, we investigated whether naturally occurring gp120 alterations in HIV-1 subtype C (C-HIV) variants exist in antiretroviral therapy (ART)-naïve subjects that may influence their sensitivity to the CCR5 antagonist maraviroc (MVC).

Results

Using a longitudinal panel of 244 R5 Envs cloned from 20 ART-naïve subjects with progressive C-HIV infection, we show that 40% of subjects (n = 8) harbored viruses that displayed incomplete inhibition by MVC, as shown by plateau’s of reduced maximal percent inhibitions (MPIs). Specifically, when pseudotyped onto luciferase reporter viruses, 16 Envs exhibited MPIs below 98% in NP2–CCR5 cells (range 79.7–97.3%), which were lower still in 293-Affinofile cells that were engineered to express high levels of CCR5 (range 15.8–72.5%). We further show that Envs exhibiting reduced MPIs to MVC utilized MVC-bound CCR5 less efficiently than MVC-free CCR5, which is consistent with the mechanism of resistance to CCR5 antagonists that can occur in patients failing therapy. Mutagenesis studies identified strain-specific mutations in the gp120 V3 loop that contributed to reduced MPIs to MVC.

Conclusions

The results of our study suggest that some ART-naïve subjects with C-HIV infection harbor HIV-1 with reduced MPIs to MVC, and demonstrate that the gp120 V3 loop region contributes to this phenotype.
  相似文献   

14.
The presence or absence of the receptor CD4 and the coreceptors CCR5 and CXCR4 restrict the cell tropism of human immunodeficiency virus type 1 (HIV-1). Despite the importance of thymic infection by HIV-1, conflicting reports regarding the expression of HIV-1 coreceptors on human thymocytes have not been resolved. We assayed the expression and function of the major HIV-1 coreceptors, CCR5 and CXCR4, as well as CCR4 and CCR7 as controls, on human thymocytes. We detected CCR5 on 2.5% of thymocytes, CXCR4 on 53% of the cells, and CCR4 on 16% and CCR7 on 11% of human thymocytes. Moreover, infection by R5 HIV-1 did not significantly induce expression of CCR5. We found that two widely used anti-CCR5 monoclonal antibodies cross-reacted with CCR8, which may account for discrepancies among published reports of CCR5 expression on primary cells. This cross-reactivity could be eliminated by deletion of amino acids 2 through 4 of CCR8. Chemotaxis assays showed that SDF-1, which binds CXCR4; MDC, which binds CCR4; and ELC, which binds CCR7, mediated significant chemotaxis of thymocytes. In contrast, MIP-1beta, whose receptor is CCR5, did not induce significant chemotaxis. Our results indicate that CXCR4, CCR4, CCR7, and their chemokine ligands may be involved in thymocyte migration during development in the thymus. CCR5 and its ligands, however, are likely not involved in these processes. Furthermore, the pattern of CCR5 and CXCR4 expression that we found may explain the greater susceptibility of human thymocytes to infection by HIV-1 isolates capable of using CXCR4 in cell entry compared to those that use only CCR5.  相似文献   

15.
洪梅 《生命科学》2000,12(2):76-79
化学趋化因子受体作为协同受体,为人免疫缺陷病毒(HIV-1)进入细胞所必需。其中CXCR4被亲T细胞的病毒株利用,而CCR5被亲巨噬细胞的病毒株利用,它们是大多数病毒株利用的协同受体。协同受体和CD4一起形成复合受体,gp120与之结合后发生构象改变,使gp41暴露出来,引起膜的融合。HIV协同受体发现为治疗艾滋病开辟了新的途径。利用趋化因子拮抗剂、单克隆抗体和天然配体封闭趋化因子受体可阻止HIV  相似文献   

16.
A series of CCR5 antagonists were optimized for potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. Compounds that met acceptable ADME criteria, selectivity, human plasma protein binding, potency shift in the presence of α-glycoprotein were evaluated in rat and dog pharmacokinetics.  相似文献   

17.
HIV-1-1进入抑制剂的研究是近年来艾滋病药物研发领域的新热点,其中最受关注的是以CCR5为靶点的新药研发。CCR5是病毒进入细胞的主要辅助受体,在HIV-1进入宿主细胞过程中起着非常重要的作用。作为CCR5的天然配体,CC类的趋化因子RANTES、MIP-1α和MIP-1β都是极具潜力的HIV-1抑制剂,特别是有关对RANTES的定向设计的研究尤为引人关注,其目的是设计出一种既有很强的抗病毒能力而又不引发炎症反应的HIV-1拮抗剂。就RANTES衍生物应用于抑制HIV进入细胞方面的研究进行了综述。  相似文献   

18.
Chemokine receptors CCR5 and CXCR4 are the primary fusion coreceptors utilized for CD4-mediated entry by macrophage (M)- and T-cell line (T)-tropic human immunodeficiency virus type 1 (HIV-1) strains, respectively. Here we demonstrate that HIV-1 Tat protein, a potent viral transactivator shown to be released as a soluble protein by infected cells, differentially induced CXCR4 and CCR5 expression in peripheral blood mononuclear cells. CCR3, a less frequently used coreceptor for certain M-tropic strains, was also induced. CXCR4 was induced on both lymphocytes and monocytes/macrophages, whereas CCR5 and CCR3 were induced on monocytes/macrophages but not on lymphocytes. The pattern of chemokine receptor induction by Tat was distinct from that by phytohemagglutinin. Moreover, Tat-induced CXCR4 and CCR5 expression was dose dependent. Monocytes/macrophages were more susceptible to Tat-mediated induction of CXCR4 and CCR5 than lymphocytes, and CCR5 was more readily induced than CXCR4. The concentrations of Tat effective in inducing CXCR4 and CCR5 expression were within the picomolar range and close to the range of extracellular Tat observed in sera from HIV-1-infected individuals. The induction of CCR5 and CXCR4 expression correlated with Tat-enhanced infectivity of M- and T-tropic viruses, respectively. Taken together, our results define a novel role for Tat in HIV-1 pathogenesis that promotes the infectivity of both M- and T-tropic HIV-1 strains in primary human leukocytes, notably in monocytes/macrophages.  相似文献   

19.
A tyrosine-sulfated CCR5-mimetic peptide, CCR5mim1, inhibits HIV-1 infection more efficiently than sulfopeptides based on the CCR5 amino terminus. Here we characterized sulfopeptide chimeras of CCR5mim1 and the heavy-chain CDR3 of the antibody PG16. Two chimeras bound a range of envelope glycoproteins and neutralized HIV-1 more efficiently than CCR5mim1. An immunoadhesin form of one of these, CCR5mim2-Ig, synergized with CD4-Ig to neutralize HIV-1. These sulfopeptides are among the broadest and most potent CCR5-mimetic peptides described to date.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) env genes were cloned from blood samples of HIV-1-infected Thai patients, and 35 infectious CRF01_AE envelope glycoprotein (Env)-recombinant viruses were established. In this report, we examined the neutralization susceptibility of these viruses to human monoclonal antibodies, 2G12, IgG1 b12, 2F5 and 4E10, pooled patient plasma, coreceptor antagonists and fusion inhibitor, T-20. The neutralization susceptibility of CRF01_AE Env-recombinant viruses to 2F5, 4E10, patient plasma, coreceptor antagonists and T-20 varied, while most viruses showed low susceptibility to 2G12 and IgG1 b12. Several dual-tropic viruses showed lower susceptibility to 2F5 and 4E10 than CXCR4- or CCR5-tropic viruses. Neutralization susceptibility of the CRF01_AE Env-recombinant virus to pooled patient plasma was negatively correlated with the length of the V1/V2 region or the number of potential N-linked glycosylation sites in conserved regions of gp120. No correlation was found between the coreceptor usage and neutralization susceptibility of the virus to T-20, whereas several dual-tropic viruses showed higher susceptibility to coreceptor antagonists than CXCR4- or CCR5-tropic viruses. We propose that these CRF01_AE Env-recombinant viruses are useful to further study the molecular mechanism of the susceptibility of CRF01_AE Env to neutralizing antibodies and viral entry inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号