首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In adult humans the ventilatory response to sustained hypoxia (VRSH) is biphasic, characterized by an initial brisk increase, due to peripheral chemoreceptor (PC) stimulation, followed by a decline attributed to central depressant action of hypoxia. To study the effects of selective stimulation of PC on the ventilatory response pattern to hypoxia, the VRSH was evaluated after pretreatment with almitrine (A), a PC stimulant. Eight subjects were pretreated with A (75 mg po) or placebo (P) on 2 days in a single-blind manner. Two hours after drug administration, they breathed, in succession, room air (10 min), O2 (5 min), room air (5 min), hypoxia [25 min, arterial O2 saturation (SaO2) = 80%], O2 (5 min), and room air (5 min). End-tidal CO2 was kept constant at the normoxic base-line values. Inspiratory minute ventilation (VI) and breathing patterns were measured over the last 2 min of each period and during minutes 3-5 of hypoxia, and nadirs in VI were assessed just before and after O2 exposure. Independent of the day, the VRSH was biphasic. With P and A pretreatment, early hypoxia increased VI 4.6 +/- 1 and 14.2 +/- 1 (SE) l/min, respectively, from values obtained during the preceding room-air period. On A day the hypoxic ventilatory decline was significantly larger than that on P day, and on both days the decline was a constant fraction of the acute hypoxic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Liang, Pei-Ji, Daphne A. Bascom, and Peter A. Robbins.Extended models of the ventilatory response to sustained isocapnic hypoxia in humans. J. Appl. Physiol. 82(2): 667-677, 1997.The purpose of this study was to examine extensions of a modelof hypoxic ventilatory decline (HVD) in humans. In the original model (model I) devised by R. Painter, S. Khamnei, and P. Robbins(J. Appl. Physiol. 74: 2007-2015, 1993), HVD is modeledentirely by a modulation of peripheral chemoreflex sensitivity. In thefirst extension (model II), a more complicated dynamic is usedfor the change in peripheral chemoreflex sensitivity. In the secondextension (model III), HVD is modeled as a combination ofboth the mechanism of Painter et al. and a component that isindependent of peripheral chemoreflex sensitivity. In all cases, aparallel noise structure was incorporated to describe the stochasticproperties of the ventilatory behavior to remove the correlation of theresiduals. Data came from six subjects from a study by D. A. Bascom, J. J. Pandit, I. D. Clement, and P. A. Robbins (Respir. Physiol.88: 299-312, 1992). For model II, there was a significantimprovement in fit for two out of six subjects. The reasons for thiswere not entirely clear. For model III, the fit was againsignificantly improved in two subjects, but in this case the subjectswere those who had the most marked undershoot and recovery ofventilation at the relief of hypoxia. In these two subjects, thechemoreflex-independent component contributed ~50% to total HVD.In the other four subjects, the chemoreflex-independent componentcontributed ~10% to total HVD. It is concluded that in somesubjects, but not in others, there may be a component of HVD thatis independent of peripheral chemoreflex sensitivity.

  相似文献   

4.
5.
Hypoxia stimulates ventilation, but when it is sustained, a decrease in the response is often seen. The mechanism of this depression or "roll off" is unclear. In this study we attempted to localize the responsible mechanism at one of three possible sites: the carotid bodies, the central nervous system (CNS), or the ventilatory apparatus. The ventilatory response to sustained hypoxia (PETO2, 40-50 Torr) was tested in 5 awake and 14 anesthetized adult cats. The roll off was found in both anesthetized and awake cats. Isocapnic hypoxia initially increased ventilation as well as phrenic and carotid sinus nerve activity in anesthetized cats (288 +/- 31, 269 +/- 31, 273 +/- 29% of control value, respectively). During the roll off, ventilation and phrenic nerve activity decreased similarly (to 230 +/- 26 and 222 +/- 28%, respectively after the roll off), but in contrast carotid sinus nerve activity remained unchanged (270 +/- 26%). Thus the ventilatory roll off was reflected in phrenic but not in carotid sinus nerve activity. We conclude that the cat represents a useful animal model of the roll off phenomenon and that the mechanism responsible for the secondary decrease in ventilation lays within the CNS.  相似文献   

6.
The relationship between CO2 and ventilatory response to sustained hypoxia was examined in nine normal young adults. At three different levels of end-tidal partial pressure of CO2 (PETCO2, approximately 35, 41.8, and 44.3 Torr), isocapnic hypoxia was induced for 25 min and after 7 min of breathing 21% O2, isocapnic hypoxia was reinduced for 5 min. Regardless of PETCO2 levels, the ventilatory response to sustained hypoxia was biphasic, characterized by an initial increase (acute hypoxic response, AHR), followed by a decline (hypoxic depression). The biphasic response pattern was due to alteration in tidal volume, which at all CO2 levels decreased significantly (P less than 0.05), without a significant change in breathing frequency. The magnitude of the hypoxic depression, independent of CO2, correlated significantly (r = 0.78, P less than 0.001) with the AHR, but not with the ventilatory response to CO2. The decline of minute ventilation was not significantly affected by PETCO2 [averaged 2.3 +/- 0.6, 3.8 +/- 1.3, and 4.5 +/- 2.2 (SE) 1/min for PETCO2 35, 41.8, and 44.3 Torr, respectively]. This decay was significant for PETCO2 35 and 41.8 Torr but not for 44.3 Torr. The second exposure to hypoxia failed to elicit the same AHR as the first exposure; at all CO2 levels the AHR was significantly greater (P less than 0.05) during the first hypoxic exposure than during the second. We conclude that hypoxia exhibits a long-lasting inhibitory effect on ventilation that is independent of CO2, at least in the range of PETCO2 studied, but is related to hypoxic ventilatory sensitivity.  相似文献   

7.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

8.
Honda, Y., H. Tani, A. Masuda, T. Kobayashi, T. Nishino, H. Kimura, S. Masuyama, and T. Kuriyama. Effect of priorO2 breathing on ventilatoryresponse to sustained isocapnic hypoxia in adult humans.J. Appl. Physiol. 81(4):1627-1632, 1996.Sixteen healthy volunteers breathed 100%O2 or room air for 10 min in random order, then their ventilatory response to sustained normocapnic hypoxia (80% arterial O2saturation, as measured with a pulse oximeter) was studied for 20 min.In addition, to detect agents possibly responsible for the respiratorychanges, blood plasma of 10 of the 16 subjects was chemically analyzed.1) Preliminary O2 breathing uniformly andsubstantially augmented hypoxic ventilatory responses.2) However, the profile ofventilatory response in terms of relative magnitude, i.e., biphasichypoxic ventilatory depression, remained nearly unchanged.3) Augmented ventilatory incrementby prior O2 breathing wassignificantly correlated with increment in the plasma glutamine level.We conclude that preliminary O2administration enhances hypoxic ventilatory response without affectingthe biphasic response pattern and speculate that the excitatory aminoacid neurotransmitter glutamate, possibly derived from augmentedglutamine, may, at least in part, play a role in this ventilatoryenhancement.

  相似文献   

9.
Andean high-altitude (HA) natives have a low (blunted) hypoxic ventilatory response (HVR), lower effective alveolar ventilation, and lower ventilation (VE) at rest and during exercise compared with acclimatized newcomers to HA. Despite blunted chemosensitivity and hypoventilation, Andeans maintain comparable arterial O(2) saturation (Sa(O(2))). This study was designed to evaluate the influence of ancestry on these trait differences. At sea level, we measured the HVR in both acute (HVR-A) and sustained (HVR-S) hypoxia in a sample of 32 male Peruvians of mainly Quechua and Spanish origins who were born and raised at sea level. We also measured resting and exercise VE after 10-12 h of exposure to altitude at 4,338 m. Native American ancestry proportion (NAAP) was assessed for each individual using a panel of 80 ancestry-informative molecular markers (AIMs). NAAP was inversely related to HVR-S after 10 min of isocapnic hypoxia (r = -0.36, P = 0.04) but was not associated with HVR-A. In addition, NAAP was inversely related to exercise VE (r = -0.50, P = 0.005) and ventilatory equivalent (VE/Vo(2), r = -0.51, P = 0.004) measured at 4,338 m. Thus Quechua ancestry may partly explain the well-known blunted HVR (10, 35, 36, 57, 62) at least to sustained hypoxia, and the relative exercise hypoventilation at altitude of Andeans compared with European controls. Lower HVR-S and exercise VE could reflect improved gas exchange and/or attenuated chemoreflex sensitivity with increasing NAAP. On the basis of these ancestry associations and on the fact that developmental effects were completely controlled by study design, we suggest both a genetic basis and an evolutionary origin for these traits in Quechua.  相似文献   

10.
11.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

12.
13.
The ventilatory response of newborn lambs to hypoxemia was evaluated in two groups of seven awake lambs studied at 2 and 7 days of life. Minute ventilation (VE) and airway occlusion pressure (P0.1) were monitored as the animals were exposed in sequence to room air, 12% O2 (15 min), 7% O2 (15 min), and room air. On 12 and 7% O2, 2-day-old lambs experienced a brisk hyperventilation followed by a VE depression, previously described in newborns of other species (diphasic response). The 7-day-old lambs had a clear diphasic VE response only on 7% O2 breathing. In the 2-day-old lambs, at the time of the relative VE depression to 12% O2, the respiratory centers showed a persisting responsiveness to further hypoxia; switching to 7% O2 caused a brisk increase in VE and P0.1 of 70 and 130%, respectively, which was followed again by a VE depression. The magnitude of the immediate VE response to hypoxia, taken as an index of the chemoreceptor strength, was inversely related to the magnitude of the VE depression (R = 0.81, P less than 0.001). It was concluded that 1) lambs as well as other neonates have an age-related diphasic VE response to hypoxia; 2) at the time of the VE depression, the respiratory centers maintain their responsiveness to further acute hypoxia; and 3) the weakness of the chemoreceptors in the newborn is a major determinant of the diphasic response.  相似文献   

14.
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI-DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation.  相似文献   

15.
Ventilatory responses to hypoxia, with and without an inspiratory resistive load, were measured in eight normal subjects, using a rebreathing technique. During the studies, the end-tidal P-CO2 was kept constant at mixed venous level (Pv-CO2) by drawing expired gas through a variable CO2-absorbing bypass. The initial bag O2 concentration was 24% and rebreathing was continued until the O2 concentration in the bag fell to 6% or the subject's arterial oxygen saturation (Sa-O2), monitored continuously by ear oximetry, fell to 70%. Studies with and without the load were performed in a formally randomized order for each subject. Linear regressions for rise in ventilation against fall in Sa-O2 were calculated. The range of unloaded responses was 0.78-3.59 1/min per 1% fall in Sa-O2 and loaded responses 0.37-1.68 1/min per 1% fall in Sa-O2. In each subject, the slope of the response curve during loading fell by an almost constant fraction of the unloaded response, such that the ratio of loaded to unloaded slope in all subjects ranged from 0.41 to 0.48. However, the extrapolated intercept of the response curve on the Sa-O2 axis did not alter significantly indicating that the P-CO2 did not alter between experiments. These results suggest that the change in ventilatory response to hypoxia during inspiratory resistive loading is related to the mechanical load applied, with the loaded slope being directly proportional to the unloaded one.  相似文献   

16.
17.
Dynamics of the ventilatory response to central hypoxia in cats   总被引:4,自引:0,他引:4  
The dynamics of the effect of central hypoxia on ventilation were investigated by the technique of artificial perfusion of the brain stem in alpha-chloralose-urethan-anesthetized cats. A two-channel roller pump and a four-way valve allowed switching the gas exchanger into and out of the extracorporeal circuit which controlled the brain stem perfusion. When isocapnic hypoxia (arterial PO2 range 18-59 Torr) was limited to the brain stem, a decline in ventilation was consistently found. In 12 cats 47 steps into and 48 steps out of central hypoxia were made. The ventilatory response was fitted using least squares with a model that consisted of a latency followed by a single-exponential function. The latencies for the steps into and out of hypoxia were not significantly different (P = 0.14) and were 32.3 +/- 4.0 and 25.1 +/- 3.6 (SE) s, respectively. The time constant for the steps into hypoxia (149.7 +/- 8.5 s) was significantly longer (P = 0.0002) than for the steps out of hypoxia (105.5 +/- 10.1 s). The time constants for the increase and decrease in ventilation after step changes in the central arterial PCO2 found in a previous study (J. Appl. Physiol. 66: 2168-2172, 1989) were not significantly different (P greater than 0.2) from the corresponding time constants in this study (for 7 cats common to both studies). Theories of the mechanisms behind hypoxic ventilatory decline need to account for the long latency, the similarity between the time constants for the ventilatory response to O2 and CO2, and the differences between the time constants for increasing and decreasing ventilation.  相似文献   

18.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

19.
Ventilatory response to sustained hypoxia in normal adults   总被引:6,自引:0,他引:6  
We examined the ventilatory response to moderate (arterial O2 saturation 80%), sustained, isocapnic hypoxia in 20 young adults. During 25 min of hypoxia, inspiratory minute ventilation (VI) showed an initial brisk increase but then declined to a level intermediate between the initial increase and resting room air VI. The intermediate level of VI was a plateau that did not change significantly when hypoxia was extended up to 1 h. The relation between the amount of initial increase and subsequent decrease in ventilation during constant hypoxia was not random; the magnitude of the eventual decline correlated confidently with the degree of initial hyperventilation. Evaluation of breathing pattern revealed that during constant hypoxia there was little alteration in respiratory timing and that the changes in VI were related to significant alterations in tidal volume and mean inspiratory flow (VT/TI). None of the changes was reproduced during a sham control protocol, in which room air was substituted for the period of low fractional concentration of inspired O2. We conclude that ventilatory response to hypoxia in adults is not sustained; it exhibits some biphasic features similar to the neonatal hypoxic response.  相似文献   

20.
This study examined the effects of human pregnancy on the central chemoreflex control of breathing. Subjects were two groups (n=11) of pregnant subjects (PG, gestational age, 36.5+/-0.4 wk) and nonpregnant control subjects (CG), equated for mean age, body height, prepregnant body mass, parity, and aerobic fitness. All subjects performed a hyperoxic CO2 rebreathing procedure, which includes prior hyperventilation and maintenance of iso-oxia. Resting blood gases and plasma progesterone and estradiol concentrations were measured. During rebreathing trials, end-tidal Pco2 increased, whereas end-tidal Po2 was maintained at a constant hyperoxic level. The point at which ventilation (Ve) began to rise as end-tidal Pco2 increased was identified as the central chemoreflex ventilatory recruitment threshold for CO2 (VRTco2). Ve levels below (basal Ve) and above (central chemoreflex sensitivity) the VRTco2 were determined. The VRTco2 was significantly lower in the PG vs. CG (40.5+/-0.8 vs. 45.8+/-1.6 Torr), and both basal Ve (14.8+/-1.1 vs. 9.3+/-1.6 l/min) and central chemoreflex sensitivity (5.07+/-0.74 vs. 3.16+/-0.29 l.min-1.Torr-1) were significantly higher in the PG vs. CG. Pooled data from the two groups showed significant correlations for resting arterial Pco2 with basal Ve, central chemoreflex sensitivity, and the VRTco2. The VRTco2 was also correlated with progesterone and estradiol concentrations. These data support the hypothesis that pregnancy decreases the threshold and increases the sensitivity of the central chemoreflex response to CO2. These changes may be due to the effects of gestational hormones on chemoreflex and/or nonchemoreflex drives to breathe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号