首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ventilatory response to sustained hypoxia in normal adults   总被引:6,自引:0,他引:6  
We examined the ventilatory response to moderate (arterial O2 saturation 80%), sustained, isocapnic hypoxia in 20 young adults. During 25 min of hypoxia, inspiratory minute ventilation (VI) showed an initial brisk increase but then declined to a level intermediate between the initial increase and resting room air VI. The intermediate level of VI was a plateau that did not change significantly when hypoxia was extended up to 1 h. The relation between the amount of initial increase and subsequent decrease in ventilation during constant hypoxia was not random; the magnitude of the eventual decline correlated confidently with the degree of initial hyperventilation. Evaluation of breathing pattern revealed that during constant hypoxia there was little alteration in respiratory timing and that the changes in VI were related to significant alterations in tidal volume and mean inspiratory flow (VT/TI). None of the changes was reproduced during a sham control protocol, in which room air was substituted for the period of low fractional concentration of inspired O2. We conclude that ventilatory response to hypoxia in adults is not sustained; it exhibits some biphasic features similar to the neonatal hypoxic response.  相似文献   

2.
We aimed to investigate whether newborn rats respond to acute hypoxia with a biphasic pattern as other newborn species, the characteristics of their ventilatory response to hypercapnia, and the ventilatory response to combined hypoxic and hypercapnic stimuli. First, we established that newborn unanesthetized rats (2-4 days old) exposed to 10% O2 respond as other species. Their ventilation (VE), measured by flow plethysmography, immediately increased by 30%, then dropped and remained around normoxic values within 5 min. The drop was due to a decrease in tidal volume, while frequency remained elevated. Hence, alveolar ventilation was about 10% below normoxic value. At the same time O2 consumption, measured manometrically, dropped (-23%), possibly indicating a mechanism to protect vital organs. Ten percent CO2 in O2 breathing determined a substantial increase in VE (+47%), indicating that the respiratory pump is capable of a marked sustained hyperventilation. When CO2 was added to the hypoxic mixture, VE increased by about 85%, significantly more than without the concurrent hypoxic stimulus. Thus, even during the drop in VE of the biphasic response to hypoxia, the respiratory control system can respond with excitation to a further increase in chemical drive. Analysis of the breathing patterns suggests that in the newborn rat in hypoxia the inspiratory drive is decreased but the inspiratory on-switch mechanism is stimulated, hypercapnia increases ventilation mainly through an increase in respiratory drive, and moderate asphyxia induces the most powerful ventilatory response by combining the stimulatory action of hypercapnia and hypoxia.  相似文献   

3.
Our objective was to test the hypothesis that exposure to prolonged hypoxia results in altered responsiveness to chemoreceptor stimulation. Acclimatization to hypoxia occurs rapidly in the awake goat relative to other species. We tested the sensitivity of the central and peripheral chemoreceptors to chemical stimuli before and after 4 h of either isocapnic or poikilocapnic hypoxia (arterial PO2 40 Torr). We confirmed that arterial PCO2 decreased progressively, reaching a stable value after 4 h of hypoxic exposure (poikilocapnic group). In the isocapnic group, inspired minute ventilation increased over the same time course. Thus, acclimatization occurred in both groups. In goats, isocapnic hypoxia did not result in hyperventilation on return to normoxia, whereas poikilocapnic hypoxia did cause hyperventilation, indicating a different mechanism for acclimatization and the persistent hyperventilation on return to normoxia. Goats exposed to isocapnic hypoxia exhibited an increased slope of the CO2 response curve. Goats exposed to poikilocapnic hypoxia had no increase in slope but did exhibit a parallel leftward shift of the CO2 response curve. Neither group exhibited a significant change in response to bolus NaCN injections or dopamine infusions after prolonged hypoxia. However, both groups demonstrated a similar significant increase in the ventilatory response to subsequent acute exposure to isocapnic hypoxia. The increase in hypoxic ventilatory sensitivity, which was not dependent on the modality of hypoxic exposure (isocapnic vs. poikilocapnic), reinforces the key role of the carotid chemoreceptors in ventilatory acclimatization to hypoxia.  相似文献   

4.
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI-DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation.  相似文献   

5.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

6.
We studied ventilatory responsiveness to hypoxia and hypercapnia in anesthetized cats before and after exposure to 5 atmospheres absolute O2 for 90-135 min. The acute hyperbaric oxygenation (HBO) was terminated at the onset of slow labored breathing. Tracheal airflow, inspiratory (TI) and expiratory (TE) times, inspiratory tidal volume (VT), end-tidal PO2 and PCO2, and arterial blood pressure were recorded simultaneously before and after HBO. Steady-state ventilation (VI at three arterial PO2 (PaO2) levels of approximately 99, 67, and 47 Torr at a maintained arterial PCO2 (PaCO2, 28 Torr) was measured for the hypoxic response. Ventilation at three steady-state PaCO2 levels of approximately 27, 36, and 46 Torr during hyperoxia (PaO2 450 Torr) gave a hypercapnic response. Both chemical stimuli significantly stimulated VT, breathing frequency, and VI before and after HBO. VT, TI, and TE at a given stimulus were significantly greater after HBO without a significant change in VT/TI. The breathing pattern, however, was abnormal after HBO, often showing inspiratory apneusis. Bilateral vagotomy diminished apneusis and further prolonged TI and TE and increased VT. Thus a part of the respiratory effects of HBO is due to pulmonary mechanoreflex changes.  相似文献   

7.
Ventilatory responses to hypoxia and hypercapnia were measured by indirect plethysmography in unanesthetized unrestrained adult rats injected neonatally with capsaicin (50 mg/kg) or vehicle. Such capsaicin treatment ablates a subpopulation of primary afferent fibers containing substance P and various other neuropeptides. Ventilation was measured while the rats breathed air, 12% O2 in N2, 8% O2 in N2, 5% CO2 in O2, or 8% CO2 in O2. Neonatal treatment with capsaicin caused marked alterations in both the magnitude and composition of the hypoxic but not hypercapnic ventilatory response. The increase in minute ventilation evoked by hypoxia in the vehicle-treated rats resulted entirely from an increase in respiratory frequency. In the capsaicin-treated rats the hypoxic ventilatory response was significantly reduced owing to an attenuation of the frequency response. Although both groups responded to hypoxia with a shortening in inspiratory and expiratory times, rats treated with capsaicin displayed less shortening of both respiratory phases. By contrast, hypercapnia induced a brisk ventilatory response in the capsaicin-treated group that was similar in magnitude and pattern to that observed in the vehicle-treated group. Analysis of the components of the hypercapnic ventilatory responses revealed no significant differences between the two groups. We, therefore, conclude that neuropeptide-containing C-fibers are essential for the tachypnic component of the ventilatory response to hypoxia but not hypercapnia.  相似文献   

8.
Ventilatory responses of 10 control and 10 dystrophic male hamsters to air, hypercapnia, and hypoxia were evaluated at four ages (40, 70, 100, and 140 days). Tidal volume (VT), frequency (f), minute ventilation (VE) as well as inspiratory and expiratory time of awake animals were measured with a plethysmograph. There was a small increase of VT in both groups with age. Although there was no change of f in the control group with age, there was a progressive decrease in f (means +/- SE: 92 +/- 8, 97 +/- 9, 74.5 +/- 10, and 68 +/- 8 breaths/min) in the dystrophic group. Consequently VE on air decreased in the dystrophic group. Both groups showed similar responses to hypoxia (13 and 10% O2) and hypercapnia (3, 5, and 8% CO2) at 40 days. By 70 days the hypercapnic, but not hypoxic, response of the dystrophic animals was significantly decreased compared with that of the control group (at 8% CO2, VE = 47.4 +/- 4.1 vs. 75.7 +/- 7.6 ml/min, P less than 0.01). At both 100 and 140 days the response of the dystrophic group to CO2 was flat; i.e., the slope VE vs. fractional concentration of inspired CO2 was close to zero, and the hypoxic responses were greatly diminished. Because hamsters increase VE in response to CO2 primarily by increasing VT, the data suggest that dystrophic hamsters are unable to increase VT at a very early age, presumably due to muscle weakness. The normal response of hamsters to hypoxia, which is primarily to increase f, appears to be maintained for a longer time.  相似文献   

9.
Effect of He-O2-breathing (79.1%:20.9%) compared to air-breathing on inspiratory ventilation (VI) and its different components [tidal volume (VT), the duration of the phases of each respiratory cycle (tI, tTOT)] as well as on inspiratory mouth occlusion pressure (P0.1) were studied in six normal men at rest and during 72 constant-load exercises (90 W) over a much longer period than in previous studies. Results showed that, irrespective of the order of administration of the two gases (7 min air----7 min He-O2 or vice versa): at rest, P0.1 decreased during He-O2 inhalation but no changes in VI and breathing pattern were detectable; during exercise, sustained He-induced hyperventilation was observed without any change in the absolute value of P0.1; increase in P0.1 between the resting period and exercise (delta P0.1) was significantly higher during He-O2-breathing than during air breathing; this He-induced hyperventilation was associated with a sustained increase in VT/tI, but with constant tI/tTOT. Helium-breathing during exercise cannot be a simple situation of resistance unloading, as has been suggested. We conclude that He-O2-breathing, after the initial compensation period, induces reflex changes in ventilatory control with an increase in inspiratory neural drive. Moreover, it appears that exercise P0.1 is not a legitimate index of inspiratory neural drive whenever rest P0.1 changes according to the nature of the inhaled gas mixture.  相似文献   

10.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

11.
We utilized selective carotid body (CB) perfusion while changing inspired O2 fraction in arterial isocapnia to characterize the non-CB chemoreceptor ventilatory response to changes in arterial PO2 (PaO2) in awake goats and to define the effect of varying levels of CB PO2 on this response. Systemic hyperoxia (PaO2 greater than 400 Torr) significantly increased inspired ventilation (VI) and tidal volume (VT) in goats during CB normoxia, and systemic hypoxia (PaO2 = 29 Torr) significantly increased VI and respiratory frequency in these goats. CB hypoxia (CB PO2 = 34 Torr) in systemic normoxia significantly increased VI, VT, and VT/TI; the ventilatory effects of CB hypoxia were not significantly altered by varying systemic PaO2. We conclude that ventilation is stimulated by systemic hypoxia and hyperoxia in CB normoxia and that this ventilatory response to changes in systemic O2 affects the CB O2 response in an additive manner.  相似文献   

12.
The effects of body position on ventilatory responses to chemical stimuli have rarely been studied in experimental animals, despite evidence that position may be a factor in respiratory results. The purpose of this study was to test whether body position could affect acute ventilatory responses to 4-min periods of moderate hypercapnia (5% CO(2) in O(2)) and poikilocapnic hypoxia (15% O(2) in N(2)) in the urethane-anaesthetised mouse. Respiratory measurements were conducted with mice in the prone and supine positions with a whole-body, single-chamber plethysmograph. During hypoxia, the time course of minute ventilation (V (E)) was similar in the two positions, but the breathing pattern was different. After the response peak, V (E) depended on respiratory frequency (f) and tidal volume (V(T)) in the prone position but mainly on V(T) in the supine position. In the supine position, f declined below the baseline values toward the end of hypoxic exposure. During hypercapnia, there were no ventilatory differences between the prone and supine positions. Brief hypoxic exposure elicited f depression in the supine position in the anaesthetised mouse. The depressive effect on f suggests that the supine position may not be optimal for sustaining ventilation, particularly during hypoxia.  相似文献   

13.
We investigated the effects of sustained embryonic hypoxia on the neonatal ventilatory chemosensitivity. White Leghorn chicken eggs were incubated at 38 degrees C either in 21% O(2) throughout incubation (normoxia, Nx) or in 15% O(2) from embryonic day 5 (hypoxia, Hx), hatching time included. Hx embryos hatched approximately 11 h later than Nx, with similar body weights. Measurements of gaseous metabolism (oxygen consumption, Vo(2)) and pulmonary ventilation (Ve) were conducted either within the first 8 h (early) or later hours (late) of the first posthatching day. In resting conditions, Hx had similar Vo(2) and body temperature (Tb) and slightly higher Ve and ventilatory equivalent (Ve/Vo(2)) than Nx. Ventilatory chemosensitivity was evaluated from the degree of hyperpnea (increase in Ve) and of hyperventilation (increase in Ve/Vo(2)) during acute hypoxia (15 and 10% O(2), 20 min each) and acute hypercapnia (2 and 4% CO(2), 20 min each). The chemosensitivity differed between the early and late hours, and at either time the responses to hypoxia and hypercapnia were less in Hx than in Nx because of a lower increase in Ve and a lower hypoxic hypometabolism. In a second group of Nx and Hx hatchlings, the Ve response to 10% O(2) was tested in the same hatchlings at the early and late hours. The results confirmed the lower hypoxic chemosensitivity of Hx. We conclude that hypoxic incubation affected the development of respiratory control, resulting in a blunted ventilatory chemosensitivity.  相似文献   

14.
In adult humans the ventilatory response to sustained hypoxia (VRSH) is biphasic, characterized by an initial brisk increase, due to peripheral chemoreceptor (PC) stimulation, followed by a decline attributed to central depressant action of hypoxia. To study the effects of selective stimulation of PC on the ventilatory response pattern to hypoxia, the VRSH was evaluated after pretreatment with almitrine (A), a PC stimulant. Eight subjects were pretreated with A (75 mg po) or placebo (P) on 2 days in a single-blind manner. Two hours after drug administration, they breathed, in succession, room air (10 min), O2 (5 min), room air (5 min), hypoxia [25 min, arterial O2 saturation (SaO2) = 80%], O2 (5 min), and room air (5 min). End-tidal CO2 was kept constant at the normoxic base-line values. Inspiratory minute ventilation (VI) and breathing patterns were measured over the last 2 min of each period and during minutes 3-5 of hypoxia, and nadirs in VI were assessed just before and after O2 exposure. Independent of the day, the VRSH was biphasic. With P and A pretreatment, early hypoxia increased VI 4.6 +/- 1 and 14.2 +/- 1 (SE) l/min, respectively, from values obtained during the preceding room-air period. On A day the hypoxic ventilatory decline was significantly larger than that on P day, and on both days the decline was a constant fraction of the acute hypoxic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In 10 normal young adults, ventilation was evaluated with and without pretreatment with aminophylline, an adenosine blocker, while they breathed pure O2 1) after breathing room air and 2) after 25 min of isocapnic hypoxia (arterial O2 saturation 80%). With and without aminophylline, 5 min of hyperoxia significantly increased inspiratory minute ventilation (VI) from the normoxic base line. In control experiments, with hypoxia, VI initially increased and then declined to levels that were slightly above the normoxic base line. Pretreatment with aminophylline significantly attenuated the hypoxic ventilatory decline. During transitions to pure O2 (cessation of carotid bodies' output), VI and breathing patterns were analyzed breath by breath with a moving-average technique, searching for nadirs before and after hyperoxia. On placebo days, at the end of hypoxia, hyperoxia produced nadirs that were significantly lower than those observed with room-air breathing and also significantly lower than when hyperoxia followed normoxia, averaging, respectively, 6.41 +/- 0.52, 8.07 +/- 0.32, and 8.04 +/- 0.39 (SE) l/min. This hypoxic depression was due to significant decrease in tidal volume and prolongation of expiratory time. Aminophylline partly prevented these alterations in breathing pattern; significant posthypoxic ventilatory depression was not observed. We conclude that aminophylline attenuated hypoxic central depression of ventilation, although it does not affect hyperoxic steady-state hyperventilation. Adenosine may play a modulatory role in hypoxic but not in hyperoxic ventilation.  相似文献   

16.
To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.  相似文献   

17.
The purpose of this study was to determine if the increase in ventilation induced by hypoxic stimulation of the carotid bodies (CB) persists after cessation of the stimulus in humans. I reasoned that a short-term potentiation (STP) of breathing, sometimes called an "afterdischarge," could be unmasked by combining hypoxia with exercise, because ventilation increases synergistically under these conditions. Seven young healthy men performed mild bicycle exercise (30% peak power) while breathing O2 for 1.5 min ("control" state), and their CB were then stimulated by 1.5 min of hypoxic exercise (10% O2--balance N2). CB stimulation was then terminated by changing the inspirate back to O2 as exercise continued. Inspiratory and expiratory duration (TI and TE) and inspiratory flow and its time integral [tidal volume (VT)] were measured with a pneumotachometer. Inspired minute ventilation (VI) and mean inspiratory flow (VT/TI) declined exponentially after the cessation of CB stimulation, with first-order time constants of 28.6 +/- 6.7 and 24.6 +/- 1.6 (SD) s, respectively. The slow decay of VI was due primarily to potentiation of both TI and TE, although the effect on the latter predominated. Additional experiments in six subjects showed that brief intense CB stimulation with four to five breaths of N2 during mild exercise induced STP of similar magnitude to that observed in the hypoxic exercise experiments. Finally, the imposition of hyperoxia during air breathing exercise at a level of respiratory drive similar to that induced by the hypoxic exercise did not change VI significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Chronic hypoxia increases the sensitivity of the central nervous system to afferent input from carotid body chemoreceptors. We hypothesized that this process involves N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms and predicted that chronic hypoxia would change the effect of the NMDA receptor blocker dizocilpine (MK-801) on the poikilocapnic hypoxic ventilatory response (HVR). Male Sprague-Dawley rats were studied before and after acclimatization to hypoxia (70 Torr inspiratory Po(2) for 9 days). We measured ventilation (VI) and the HVR before and after systemic MK-801 treatment (3 mg/kg ip). MK-801 resulted in a constant respiratory frequency (approximately 175 min(-1)) during acute exposure to 10% and 30% O(2) before and after acclimatization. MK-801 had no effect on tidal volume (VT) before acclimatization, but it significantly decreased Vt when the animals were breathing 10% O(2) after acclimatization. The net effect of MK-801 was to eliminate the O(2) sensitivity of Vi before (via changes in respiratory frequency) and after (via changes in VT) acclimatization. Hence, chronic hypoxia altered the effect of MK-801 on the acute HVR, primarily because of increased effects on Vt. This indicates that changes in NMDA receptor-mediated neurotransmission may be involved in ventilatory acclimatization to hypoxia. However, further experiments are necessary to determine the precise location of such plasticity in the central nervous system.  相似文献   

19.
Respiratory adaptation to chronic hypercapnia in newborn rats   总被引:1,自引:0,他引:1  
We asked 1) whether newborn rats respond to chronic hypercapnia with a persistent increase in ventilation and 2) whether changes in lung mass were accompanying the respiratory adaptation to chronic hypercapnia, as previously observed during neonatal chronic hypoxia. Five litters of rats were kept in 7% CO2 (with 21% O2) from day 1 to 7 after birth (CO2exp) and compared with six litters of control rats growing in normocapnia-normoxia (C). Body weight was similar between the two groups. Ventilation, measured by flow plethysmography, increased in CO2exp from day 2 and remained steadily elevated, and at day 7 it almost doubled (174%) the C value because of the large increase in tidal volume and mean inspiratory flow (192 and 189%, respectively) with no changes in respiratory frequency. Two days after return to normocapnia, ventilation was still 33% higher than in C; at this time, acute exposure to hypercapnia increased ventilation relatively less in the CO2exp than in C because of a lower increase in tidal volume. Neither the lung weight-to-body weight nor the heart weight-to-body weight ratios increased in CO2exp. We conclude that 1) chronic hypercapnia in newborn rats induces a steady increase in ventilation, which persists at least 2 days after return to normocapnia with a reduction in the acute response to CO2, and 2) hyperventilation per se is not the cause of the increased lung mass observed during chronic neonatal hypoxia.  相似文献   

20.
Ventilation and electromyographic (EMG) activity of the diaphragm were recorded in unanesthetized kittens 2 and 10 wk of age during normoxia, hypercapnia (2 and 4% CO2), and hypoxia (12 and 10% O2). We measured integrated diaphragmatic EMG activity at end inspiration (DIAI) and end expiration (DIAE); the difference (DIAI-E), which represents the phasic change of the diaphragmatic activity, was considered responsible for a given tidal volume (VT). During hypercapnia, the 2-wk-old kittens increased minute ventilation (V) by increases in both VT and respiratory frequency (f), whereas the 10-wk-old kittens increased V primarily by an increase in VT. At both ages, DIAI and DIAI-E increased during hypercapnia, whereas DIAE did not change significantly. During hypoxia, in the young kittens, V and VT decreased while f increased markedly; in the older kittens, V, VT, and f did not change significantly. In kittens of both ages, DIAI increased during hypoxia; because diaphragmatic activity persisted into expiration, DIAE also increased. DIAI-E, as well as VT, was decreased in the young kittens, whereas in the older ones DIAI-E was slightly increased despite an unchanged VT. Finally, the ventilatory and diaphragmatic response to hypoxia changes with maturation in contrast to the response to hypercapnia. It is concluded that 1) the hypoxia-induced reduction of VT may result from prolongation of diaphragmatic activity into expiration, inasmuch as it induces a reduction of the phasic change of the diaphragmatic activity, and 2) because DIAI-E indirectly reflects central inspiratory output, a central mechanism should be involved in the reduced VT and V in response to hypoxia in newborns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号