共查询到20条相似文献,搜索用时 15 毫秒
1.
Although cis-diamminedichloroplatinum (II) (cisplatin) is a potent anticancer drug, clinical use of this agent is highly limited predominantly because of its strong side effects on the kidney and gastrointestinal tracts. We found that cisplatin impaired respiratory function and DNA of mitochondria in renal proximal tubules and small intestinal mucosal cells, thereby inducing apoptosis of epithelial cells. Cisplatin-induced mitochondrial dysfunction and DNA (mtDNA) injury, lipid peroxidation, and apoptosis of epithelial cells in the kidney and small intestine were strongly inhibited by L-carnitine. However, carnitine had no appreciable effect on the tumoricidal action of cisplatin against cancer cells inoculated in the peritoneal cavity. These results indicate that L-carnitine may have therapeutic potential for inhibiting the side effects of cisplatin and other anticancer agents in the kidney and small intestine. 相似文献
2.
Of all the SERCA pumps, SERCA3 was the latest to be described and the least well known. Its primary structure deviates more than usual from the other members of the SERCA family. It is not known whether its remarkably low affinity for Ca2+ (K0.5 > 1M) observed upon expression in the COS cell system occurs also in its normal cellular context. SERCA3 is particularly expressed at high levels in different types of blood cells and related cells like platelets, lymphocytes, mast cells and arterial endothelial cells. It is also found in cerebellar Purkinje neurons. The physiological significance of this expression pattern remains unknown. 相似文献
3.
Jeong Hee Hong Hyun Sil Kim Shmuel Muallem 《Progress in biophysics and molecular biology》2010,103(1):81-87
A mutation of Atp2a2 gene encoding the sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2) causes Darier's disease in human and null mutation in one copy of Atp2a2 leads to a high incidence of squamous cell tumor in a mouse model. In SERCA2 heterozygote (SERCA2+/−) mice keratinocytes, mechanisms involved in partial depletion of SERCA2 gene and its related tumor induction have not been studied. In this study, we investigated Ca2+ signaling and differential gene expression in primary cultured keratinocytes from SERCA2+/− mice. SERCA2+/− keratinocytes showed reduced initial increases in intracellular concentration of calcium in response to ATP, a G-protein coupled receptor agonist, and higher store-operated Ca2+ entry with the treatment of thapsigargin, an inhibitor of SERCA, compared to wild type kerationcytes. Protein expressions of plasma membrane Ca2+ ATPases, NFATc1, phosphorylated ERK, JNK, and phospholipase γ1 were increased in SERCA2+/− keratinocytes. Using the gene fishing system, we first found in SERCA2+/− keratinocytes that gene level of tumor-associated calcium signal transducer 1, crystalline αB, procollagen XVIII α1, and nuclear factor I-B were increased. Expression of involucrin, a marker of keratinocyte differentiation, was decreased in SERCA2+/− keratinocytes. These results suggest that the alterations of Ca2+ signaling by SERCA2 haploinsufficiency alternate the gene expression of tumor induction and differentiation in keratinocytes. 相似文献
4.
Giuseppe Inesi Francesco Tadini-Buoninsegni 《Journal of cell communication and signaling》2014,8(1):5-11
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis. 相似文献
5.
The SERCA family includes 3 genes (SERCA1-3), each of which giving rise to various isoforms. To date, detailed structural data is only available for the SERCA1a isoform. Here, limited trypsinolysis of either human platelet membranes or recombinant SERCA3a in HEK-293 cells followed by Western blotting using antibodies covering different regions of the SERCA3(a) protein revealed two, kinetically distinct, Early (ETF) and Late (LTF) Tryptic Fragmentations. The ETF uses many tryptic sites while the LTF uses a unique tryptic site. Using site-directed mutagenesis: i) Arg334, Arg396 and Arg638 were directly assigned to the ETF and ii) Arg198 was assigned as the only tryptic site to the LTF. Arg671, Lys712/Lys713 and Lys728 were also found to modulate the ETF. SERCA inhibitors Tg and tBHQ induced modest inhibition of the ETF. In contrast, the addition of CaCl2, EGTA or AlF4− strikingly modified the ETF without any effect on the LTF. Trypsinolysis of the other recombinant SERCA3b-3f isoforms revealed: i) same ETF and LTF as SERCA3a, with variations of the length of the C-terminal fragments; ii) Arg1002 as an additional tryptic site in SERCA3b-3e isoforms. Taken together, the two distinct SERCA3 fragmentation profiles sign the co-expression of SERCA3 proteins in two conformational states in cell membranes. 相似文献
6.
Zhao X Wang L Sun Y Ye L Lu J Yuan Y Qian G Ge S 《Molecular and cellular biochemistry》2008,312(1-2):33-38
Bik, a BH3-only protein, was identified to induce cells apoptosis. In this study, we reported that Bik exclusively localized
to endoplasmic reticulum rather than mitochondria. The apoptosis induced by Bik was inhibited in Hep3B cells, when TM domain
of Bik was truncated. The ectopic overexpression of Bik protein caused the rapid and sustained elevation of the intracellular
cytosolic Ca2+, which originated from the ER Ca2+ stores releasing. The Hep3B cells apoptosis induced by Bik was not prevented by establishing the clamped cytosolic Ca2+ condition, or by buffering of the extracellular Ca2+ with EGTA, suggesting that the depletion of ER Ca2+ stores rather than the elevation of cytosolic Ca2+ or the extracellular Ca2+ entry contributed to Bik-induced Hep3B cells apoptosis.
The authors Xiaoping Zhao and Li Wang contributed equally to this work. 相似文献
7.
8.
The steady-state levels of Ca2+ within the endoplasmic reticulum (ER) and the transport of 45Ca2+ into isolated ER of barley (Hordeum vulgare L. cv. Himalaya) aleurone layers were studied. The Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the ER was measured using the Ca2+-sensitive dye indo-1. Endoplasmic reticulum was isolated and purified from indo-1-loaded protoplasts, and the Ca2+ level in the lumen of the ER was determined by the fluorescence-ratio method to be at least 3 M. Transport of 45Ca2+ into the ER was studied in microsomal fractions isolated from aleurone layers incubated in the presence and absence of gibberellic acid (GA3) and Ca2+. Isopycinic sucrose density gradient centrifugation of microsomal fractions isolated from aleurone layers or protoplasts separates ER from tonoplast and plasma membranes but not from the Golgi apparatus. Transport of 45Ca2+ occurs primarily in the microsomal fraction enriched in ER and Golgi. Using monensin and heat-shock treatments to discriminate between uptake into the ER and Golgi, we established that 45Ca2+ transport was into the ER. The sensitivity of 45Ca2+ transport to inhibitors and the Km of 45Ca2+ uptake for ATP and Ca2+ transport in the microsomal fraction of barley aleurone cells. The rate of 45Ca2+ transport is stimulated several-fold by treatment with GA3. This effect of GA3 is mediated principally by an effect on the activity of the Ca2+ transporter rather than on the amount of ER.Abbreviations CCR
cytochrome-c reductase
- DCCD
dicyclohexylcarbodiimide
- EGTA
ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid
- ER
endoplasmic reticulum
- FCCP
carbonylcyanide p-trifluoromethoxyphenyl hydrazone
- GA3
gibberellic acid
- IDPase
inosine diphosphatase
- Mon
monensin 相似文献
9.
In resting muscle, cytoplasmic Ca2+ concentration is maintained at a low level by active Ca2+ transport mediated by the Ca2+ ATPase from sarcoplasmic reticulum. The region of the protein that contains the catalytic site faces the cytoplasmic side of the membrane, while the transmembrane helices form a channel-like structure that allows Ca2+ translocation across the membrane. When the coupling between the catalytic and transport domains is lost, the ATPase mediates Ca2+ efflux as a Ca2+ channel. The Ca2+ efflux through the ATPase channel is activated by different hydrophobic drugs and is arrested by ligands and substrates of the ATPase at physiological pH. At acid pH, the inhibitory effect of cations is no longer observed. It is concluded that the Ca2+ efflux through the ATPase may be sufficiently fast to support physiological Ca2+ oscillations in skeletal muscle, that occur mainly in conditions of intracellular acidosis. 相似文献
10.
Elizabeth Zubrzycka-Gaarn Glen MacDonald Laurie Phillips Annelise O. Jorgensen David H. MacLennan 《Journal of bioenergetics and biomembranes》1984,16(5-6):441-464
In order to determine whether polymorphic forms of the Ca2+ + Mg2+-dependent ATPase exist, we have examined the cross-reactivity of five monoclonal antibodies prepared against the rabbit skeletal muscle sarcoplasmic reticulum enzyme with proteins from microsomal fractions isolated from a variety of muscle and nonmuscle tissues. All of the monoclonal antibodies cross-reacted in immunoblots against rat skeletal muscle Ca2+ + Mg2+-dependent ATPase but they cross-reacted differentially with the enzyme from chicken skeletal muscle. No cross-reactivity was observed with the Ca2+ + Mg2+-dependent ATPase of lobster skeletal muscle. The pattern of antibody cross-reactivity with a 100,000 dalton protein from sarcoplasmic reticulum and microsomes isolated from various muscle and nonmuscle tissues of rabbit demonstrated the presence of common epitopes in multiple polymorphic forms of the Ca2+ + Mg2+-dependent ATPase. One of the monoclonal antibodies prepared against the purified Ca2+ + Mg2+-dependent ATPase of rabbit skeletal muscle sarcoplasmic reticulum was found to cross-react with calsequestrin and with a series of other Ca2+-binding proteins and their proteolytic fragments. Its cross-reactivity was enhanced in the presence of EGTA and diminished in the presence of Ca2+. Its lack of cross-reactivity with proteins that do not bind Ca2+ suggests that it has specificity for antigenic determinants that make up the Ca2+-binding sites in several Ca2+-binding proteins including the Ca2+ + Mg2+-dependent ATPase.This paper is dedicated to the memory of Dr. David E. Green. 相似文献
11.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help. 相似文献
12.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation. 相似文献
13.
Zarain-Herzberg Angel Afzal Nasir Elimban Vijayan Dhalla Naranjan S. 《Molecular and cellular biochemistry》1996,163(1):285-290
Myocardial infarction in rats induced by occluding the left coronary artery for 4, 8 and 16 weeks has been shown to result in congestive heart failure (CHF) characterized by hypertrophy of the viable ventricular myocardial tissue. We have previously demonstrated a decreased calcium transport activity in the sarcoplasmic reticulum (SR) of post-myocardial infarction failing rat hearts. In this study we have measured the steady state levels of the cardiac SR Ca2+-pump ATPase (SERCA2) mRNA using Northern blot and slot blot analyses. The relative amounts of SERCA2 mRNA were decreased with respect to GAPDH mRNA and 28 S rRNA in experimental failing hearts at 4 and 8 weeks post myocardial infarction by about 20% whereas those at 16 weeks declined by about 35% of control values. The results obtained by Western blot analysis, revealed that the immunodetectable levels of SERCA2 protein in 8 and 16 weeks postinfarcted animals were decreased by about 20% and 30%, respectively. The left ventricular SR Ca2+-pump ATPase specific activity was depressed in the SR preparations of failing hearts as early as 4 weeks post myocardial infarction and declined by about 65% at 16 weeks compared to control. These results indicate that the depressed SR Ca2+-pump ATPase activity in CHF may partly be due to decreased steady state amounts of SERCA2 mRNA and SERCA2 protein in the failing myocardium. 相似文献
14.
Enzymes are able to handle the energy derived from the hydrolysis of phosphate compounds in such a way as to determine the
parcel that is used for work and the fraction that is converted into heat. The sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) is a family of membrane-bound ATPases that are able to transport Ca2+ ion across the membrane using the chemical energy derived from ATP hydrolysis. The heat released during ATP hydrolysis by
SERCA may vary from 10 up to 30 kcal/mol depending on the SERCA isoform used and on whether or not a Ca2+ gradient is formed across the membrane. Drugs such as heparin, dimethyl sulfoxide and the platelet-activating factor (PAF)
are able to modify the fraction of the chemical energy released during ATP hydrolysis that is used for Ca2+ transport and the fraction that is dissipated in the surrounding medium as heat. The thyroid hormone 3,5,3′-triiodo L-thyronine (T3) regulates the expression and function of the thermogenic SERCA isoforms. Modulation of heat production by SERCA might be
one of the mechanisms involved in the increased thermogenesis found in hyperthyroidism. 相似文献
15.
Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b 总被引:6,自引:0,他引:6
Calreticulin (CRT) and calnexin (CLNX) are lectin chaperones that participate in protein folding in the endoplasmic reticulum (ER). CRT is a soluble ER lumenal protein, whereas CLNX is a transmembrane protein with a cytosolic domain that contains two consensus motifs for protein kinase (PK) C/proline- directed kinase (PDK) phosphorylation. Using confocal Ca(2+) imaging in Xenopus oocytes, we report here that coexpression of CLNX with sarco endoplasmic reticulum calcium ATPase (SERCA) 2b results in inhibition of intracellular Ca(2+) oscillations, suggesting a functional inhibition of the pump. By site-directed mutagenesis, we demonstrate that this interaction is regulated by a COOH-terminal serine residue (S562) in CLNX. Furthermore, inositol 1,4,5-trisphosphate- mediated Ca(2+) release results in a dephosphorylation of this residue. We also demonstrate by coimmunoprecipitation that CLNX physically interacts with the COOH terminus of SERCA2b and that after dephosphorylation treatment, this interaction is significantly reduced. Together, our results suggest that CRT is uniquely regulated by ER lumenal conditions, whereas CLNX is, in addition, regulated by the phosphorylation status of its cytosolic domain. The S562 residue in CLNX acts as a molecular switch that regulates the interaction of the chaperone with SERCA2b, thereby affecting Ca(2+) signaling and controlling Ca(2+)-sensitive chaperone functions in the ER. 相似文献
16.
Two kinds of ATP binding sites were found on the ATPase molecule in deoxycholic acid-treated sarcoplasmic reticulum. One was the catalytic site (1 mol/mol active site) and its affinity was high. Upon addition of Ca2+, all the ATP bound to the catalytic site disappeared at 75 mM KCl, while a significant amount of ATP remained bound to the site at 0–2 mM KCl. The latter binding was found to be due to the formation of a slowly exchanging enzyme-ATP complex, which is in equilibrium with phosphoenzyme + ADP. The other binding site was the regulatory one (1 mol/mol active site) and its affinity was low, changing only insignificantly upon addition of Ca2+. The ATP binding to the regulatory site shifted the equilibrium between the slowly exchanging complex and EP toward EP. 相似文献
17.
18.
Summary During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca2+-stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 A/cm2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca2+/Mg2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca2+-stimulated ATPase. The ionic currents and Ca2+-stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca2+-stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca2+-stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.
Offprint requests to: D. Zivkovic 相似文献
19.
Summary The two high affinity calcium binding sites of the cardiac (Ca2+ + Mg2+)-ATPase have been identified with the use of Eu3+. Eu3+ competes for the two high affinity calcium sites on the enzyme. With the use of laser-pulsed fluorescent spectroscopy, the environment of the two sites appear to be heterogeneous and contain different numbers of H2O molecules coordinated to the ion. The ion appears to be occluded even further in the presence of ATP. Using non-radiative energy transfer studies, we were able to estimate the distance between the two Ca2+ sites to be between 9.4 to 10.2 A in the presence of ATP. Finally, from the assumption that the calcium site must contain four carboxylic side chains to provide the 6–8 ligands needed to coordinate calcium, and based on our recently published data, we predict the peptidic backbone of the two sites. 相似文献
20.
Dai R Li J Fu J Chen Y Yu L Zhao X Qian Y Zhang H Chen H Ren Y Su B Luo T Zhu J Wang H 《The Journal of biological chemistry》2012,287(18):14586-14597
c-Met, the tyrosine-kinase receptor for hepatocyte growth factor, plays a critical role in the tumorigenesis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains incompletely understood. The mature c-Met protein p190Met(αβ) (consists of a α subunit and a β subunit) is processed from pro-Met. Here we show that pro-Met is processed into p190Met(NC) by sarco/endoplasmic reticulum calcium-ATPase (SERCA) inhibitor thapsigargin. p190Met(NC) compensates for the degradation of p190Met(αβ) and protects human HCC cells from apoptosis mediated by endoplasmic reticulum (ER) stress. In comparison with p190Met(αβ), p190Met(NC) is not cleaved and is expressed as a single-chain polypeptide. Thapsigargin-initiated p190Met(NC) expression depends on the disturbance of ER calcium homeostasis. Once induced, p190Met(NC) is activated independent of hepatocyte growth factor engagement. p190Met(NC) contributes to sustained high basal activation of c-Met downstream pathways during ER calcium disturbance-mediated ER stress. Both p38 MAPK-promoted glucose-regulated protein 78 (GRP78) expression and sustained high basal activation of PI3K/Akt and MEK/ERK are involved in the cytoprotective function of p190Met(NC). Importantly, the expression of p190Met(NC) is detected in some HCC cases. Taken together, these data provide a potential mechanism to explain how c-Met promotes HCC cells survival in response to ER stress. We propose that context-specific processing of c-Met protein is implicated in HCC progression in stressful microenvironments. 相似文献