首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous work indicates that myocardial ischemia could be the mechanism responsible for the left ventricular (LV) dysfunction that frequently develops after massive sympathetic nervous system (SNS) activation. In this study, coronary blood flow (CBF) and myocardial ATP, creatine phosphate, and lactate concentrations were measured after massively activating the SNS of anesthetized rabbits with an intracisternal injection of veratrine. CBF was measured at time 0 (baseline), and at 2, 10, and 20 min after SNS activation in one group, and at 0, 45, 90, and 150 min in a second group. Myocardial ATP, creatine phosphate, and lactate were measured at 0, 2, 10, 20, 90, and 150 min in separate groups of rabbits. SNS activation caused LV dysfunction in approximately 60% of the rabbits. SNS-related increases in CBF kept pace with the increases in myocardial energy demand as determined from the systolic pressure-heart rate product. The subendocardial-to-subepicardial blood flow ratio did not change significantly. Myocardial creatine phosphate concentration was depressed 2 min after SNS activation and remained depressed for at least 20 min. ATP fell continuously and was significantly lower than baseline by 20 min. Tissue lactate concentration was elevated at this time. By 90 min, the concentrations of all three metabolites had recovered. These results indicate that myocardial high-energy phosphate compounds fall after massive SNS activation, but ischemia does not appear to be the underlying mechanism.  相似文献   

2.
The newly developed pulse width modulation method for the depth-selected in vivo NMR under high magnetic field (6.4 Tesla), sectional magnetic resonance (SMR), enabled us to selectively obtain and follow time sequence of P metabolism of rat heart in a whole body. An EKG-gated 31P-SMR spectroscopy at every 30 m sec, after the R wave, with calibrating the resonance intensity by an external standard, demonstrated a synchronous oscillation of both contents of creatine phosphate (CP) and beta-ATP: minimal at the early 2/3 of the systole as was identified by the aortic pressure measurement and maximal at the last 1/3 of the diastole, while inorganic phosphate content varied antiphasically to CP or ATP without obvious change of intracellular pH in cardiac cycle. This is the first report that described an in vivo detection of cyclic change of phosphate metabolites in the heart.  相似文献   

3.
The 31P nuclear magnetic resonance (NMR) spectrum of the digestive gland-gonad complex (DGG) of the schistosome vector Biomphalaria glabrata was characterized and the effects of infection by Schistosoma mansoni noted. The in vivo spectrum was comprised of 11 peaks, 5 downfield and 6 upfield of an external 85% phosphoric acid standard. Based on a variety of analytical procedures, the upfield peaks from the standard were demonstrated to be composed of carbamoyl phosphate + a mixture of 3 phosphatides and sphingomyelin, the gamma + beta phosphorus resonances of nucleotide triphosphate (NTP) and nucleotide diphosphate (NDP), respectively, the alpha phosphorus resonances of NTP + NDP, NAD(H) + the phosphorus resonance of uridine phosphate from uridine diphosphoglucose (UDPG), the phosphorus resonance of glucose phosphate from UDPG and, last, the beta phosphorus resonance of NTP. The downfield peaks were assigned as glycerophosphoryl choline, intracellular inorganic phosphate (Pi), sugar phosphates + phosphoryl choline, aminoethyl phosphonate (AEP), and ceramide AEP. T1 values for the in vivo NMR components were determined by inversion recovery. Infection produced distinct alterations in the levels of nonnucleotide components of the in vivo 31P NMR spectrum and the spectra of tissue extracts. Specifically, the levels of phosphonate, phospholipids, and carbamoyl phosphate were markedly reduced, and the relative level of Pi was increased. The potential significance of these changes to the parasite-host relationship was discussed. In contrast, starvation resulted in a decreased level of phosphonate only. The pH of the intact DGG was estimated by titrating the inorganic phosphate component of tissue extracts. The mean pH was 6.9 for both control and infected material.  相似文献   

4.
Membrane vesicles of Streptococcus lactis were used to characterize a novel anion exchange involving phosphate and sugar 6-phosphates. For vesicles loaded with 50 mM phosphate at pH 7, homologous phosphate:phosphate exchange had a maximal rate of 130 nmol/min/mg of protein and a Kt of 0.21 mM external phosphate; among phosphate analogues tested, only arsenate replaced phosphate. Heterologous exchange was studied by 2-deoxyglucose 6-phosphate entry into phosphate-loaded vesicles; this reaction had a maximal velocity of 31 nmol/min/mg of protein and a Kt of 26 microM external substrate. Sugar phosphate moved intact during this exchange, since its entry led to loss of internal 32Pi without transfer of 32P to sugar phosphate. Inhibitions of phosphate exchange suggested that the preferred sugar phosphate substrates were (Kiapp): glucose, 2-deoxyglucose, and mannose 6-phosphates (approximately 20 microM) greater than fructose 6-phosphate (150 microM) greater than glucosamine 6-phosphate (420 microM) greater than alpha-methylglucoside 6-phosphate (740 microM). Stoichiometry for phosphate:2-deoxyglucose 6-phosphate antiport was 2:1 at pH 7, and since initial rates of exchange were unaffected by charge carrying ionophores (gramicidin, valinomycin, a protonophore), this unequal stoichiometry indicated the electroneutral exchange of two monovalent phosphates for a single divalent sugar phosphate.  相似文献   

5.
ATP concentrations in the perfused rat liver during normoxic perfusion, transient ischemia, and recovery from transient ischemia were measured using the modified 31P cryo-NMR method (Chance, B., Nakase, Y., Bond, M., Leigh, J. S., Jr., and McDonald, G. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 4925-4929). Transient ischemia was induced in the perfused livers of starved rats, and multiple freeze-trapped tissue samples were taken from each liver at short intervals (15-30 s) during ischemia or following reperfusion. The freeze-trapped tissue was pulverized together with an antifreezing agent and high energy metabolites were measured by 31P NMR at 243 K after thawing. By using the cryo-NMR technique, a biochemical time resolution of 2 s could be achieved. Absolute metabolite concentrations were calculated by comparing the peak areas with internal standards mixed into the samples. Good time resolution and reliable concentration measurements provided by the cryo-NMR method enable us to estimate the ATP synthesis rate in the perfused liver during reperfusion following transient ischemia. The rate of ATP synthesis in the normoxic perfusion was 1.95 mumol/min/g wet weight; the maximal ATP synthesis rate during the recovery phase from ischemia was 5.75 mumol/min/g wet weight.  相似文献   

6.
研究了磷酸盐限量对产甘油假丝酵母甘油合成与胞内磷积累的影响。结果表明, 当酵母细胞从适磷或富磷培养基转接入低磷培养基时, 发酵过程中胞内积累的磷逐渐减少; 而当菌体从低磷培养基转接入适磷或富磷培养基时, 发酵过程中胞内聚磷酸盐的积累量迅速增加。当细胞在第14小时和第38小时从适磷培养基转接入低磷培养基时甘油得率分别高达60.9%和61.4%, 而甘油产率则分别为2.03 g/(L·h)和2.23 g/(L·h)。这些现象说明限制发酵培养基中的磷浓度是产甘油假丝酵母高产甘油的必要条件, 并为其反复分批发酵法生产甘油提供了重要依据。  相似文献   

7.
The quantitative analysis of the mobile high-energy phosphorus metabolites in isovolumic Langendorff-perfused rabbit hearts has been performed by 31P NMR utilizing rapid pulse repetition to optimize sensitivity. Absolute quantification required reference to an external standard, determination of differential magnetization saturation and resonance peak area integration by Lorentzian lineshape analysis. Traditionally accepted hemodynamic indices (LVDP, dp/dt) and biochemical indices (lactate, pyruvate) of myocardial function were measured concomitantly with all NMR determinations. Hemodynamically and biochemically competent Langendorff-perfused rabbit hearts were found to have intracellular PCr, ATP, GPC, and Pi concentrations of 14.95 +/- 0.25, 8.08 +/- 0.13, 5.20 +/- 0.58 and 2.61 +/- 0.47 mM respectively. Intracellular pH was 7.03 +/- 0.01. Cytosolic ADP concentration was derived from a creatine kinase equilibrium model and determined to be approximately 36 microM. Reduction of perfusate flow from 20 to 2.5 ml/min demonstrated statistically significant decreases in PCr, ATP, and pH as well as an increase in Pi that correlated closely with the independent hemodynamic and biochemical indices of myocardial function. The decrease in ATP and PCr concentrations precisely matched the increase in Pi during reduced flow. These results constitute the first quantitative determination of intracellular metabolite concentrations by 31P NMR in intact rabbit myocardium under physiologic and low flow conditions.  相似文献   

8.
The phosphorus contents of acid-soluble pools, lipid, ribonucleic acid, and acid-insoluble polyphosphate were lowered in Synechococcus in proportion to the reduction in growth rate in phosphate-limited but not in nitrate-limited continuous culture. Phosphorus in these cell fractions was lost proportionately during progressive phosphate starvation of batch cultures. Acid-insoluble polyphosphate was always present in all cultural conditions to about 10% of total cell phosphorus and did not turn over during balanced exponential growth. Extensive polyphosphate formation occurred transiently when phosphate was given to cells which had been phosphate limited. This material was broken down after 8 h even in the presence of excess external orthophosphate, and its phosphorus was transferred into other cell fractions, notably ribonucleic acid. Phosphate uptake kinetics indicated an invariant apparent K(m) of about 0.5 muM, but V(max) was 40 to 50 times greater in cells from phosphate-limited cultures than in cells from nitrate-limited or balanced batch cultures. Over 90% of the phosphate taken up within the first 30 s at 15 degrees C was recovered as orthophosphate. The uptake process is highly specific, since neither phosphate entry nor growth was affected by a 100-fold excess of arsenate. The activity of polyphosphate synthetase in cell extracts increased at least 20-fold during phosphate starvation or in phosphate-restricted growth, but polyphosphatase activity was little changed by different growth conditions. The findings suggest that derepression of the phosphate transport and polyphosphate-synthesizing systems as well as alkaline phosphatase occurs in phosphate shortage, but that the breakdown of polyphosphate in this organism is regulated by modulation of existing enzyme activity.  相似文献   

9.
R L Barbour  C H Sotak  G C Levy  S H Chan 《Biochemistry》1984,23(25):6053-6062
A novel 31P NMR method is described that is capable of determining rapid changes in the intracellular levels of various phosphorus-containing compounds in an isolated, perfused working rat heart. This technique involves the gating of 31P NMR measurements to a heart that is alternately perfused with a modified Krebs-Henseleit medium containing 10 mM pyruvate and equilibrated with either 95% O2/5% CO2 or 95% N2/5% CO2. The experimental design allows up to three NMR measurements to be made during a single O2/N2 perfusion cycle. When these measurements are repeated at different intervals during the cycle, rapid changes in metabolite levels can be determined. Preliminary studies have shown that hearts remain hemodynamically stable to the aerobic/anoxic perfusion cycle as judged by heart rate, peak systolic pressure, aortic output, and coronary flow for at least 80 min in the magnet when subjected to cycle times of 4.5-s O2 and 1.5-s N2 perfusions. NMR measurements made under these conditions showed that a transition from full aerobic perfusion to this cycle revealed a new steady state, with an increased inorganic phosphate level from 6% total observable phosphorus to 10% and a possibly significant decreased measurement of creatine phosphate level (from 35 to 31%). Comparison of individual NMR measurements made during this perfusion cycle shows apparent rapid cyclical variations in intracellular pH and the levels of Pi, ATP, and NAD(H). These changes, expressed as variations above and below mean values measured during the cycle, showed that (a) intracellular pH, as measured by the chemical shift of Pi, reversibly decreases by more than 0.1 pH unit within 0.5-1 s following maximal anoxic perfusion and (b) coincident with a decrease in intracellular pH, Pi levels increased by a maximum of 30-40% whereas ATP levels decreased by a maximum of 15-20%. The amount of total observable phosphorous detected during the cycle is essentially constant. Unexpectedly, creatine phosphate levels are most stable, indicating that their levels are being maintained at the expense of ATP. Also unexpected is the finding that NAD(H) levels varied from maximal to undetectable levels during the perfusion cycle. The current method of aerobic/anoxic perfusion is capable of resolving metabolic events much faster than previous NMR methods and yielding information that is unobtainable by any other technique.  相似文献   

10.
The effects of L-propionylcarnitine on mechanical function, creatine phosphate and ATP content, and lactate dehydrogenase leakage were studied in isolated perfused rat hearts exposed to global no-flow ischemia for 30 min followed by reperfusion for 20 min. Five and 10 mM L-propionylcarnitine resulted in a 100% recovery of left ventricular-developed pressure, whereas the recovery was only 40% in the hearts perfused without this agent. Ischemia-reperfusion caused a 85% loss of creatine phosphate and a 77% loss of ATP, which was prevented by 10 mM L-propionylcarnitine. Five millimolar L-propionylcarnitine protected the heart from the loss of creatine phosphate but not from the loss of ATP. Ten millimolar L-propionylcarnitine failed to improve the postischemic left ventricular-developed pressure, when it was added to the perfusate only after ischemia. L-propionylcarnitine alleviated the decrease of coronary flow in the reperfused hearts. Lactate dehydrogenase leakage was aggravated in the beginning of the reperfusion period by 10 mM L-propionylcarnitine. This adverse effect was, however, transient. L-Propionylcarnitine provides protection for the postischemic reperfused heart in a dose-dependent manner. The optimal time for administration is before the ischemic insult. High doses of this compound may perturb cell membrane integrity. Moreover, the present data point to an intracellular, metabolic, and perhaps anaplerotic mechanism of action of L-propionylcarnitine in cardiac ischemia-reperfusion injury.  相似文献   

11.
The energy metabolism in rat brains during postnatal development was followed by in vivo 31P NMR. Using a small surface coil (from several to 10 mm in diameter) placed at the head of a conscious rat, high-energy phosphate compounds in the brain and the steady-state kinetics among them were measured. The cellular contents of some phosphate compounds changed widely during the period of postnatal cell growth from age 10 to 20 days. During the same period, the cellular activity of creatine kinase increased by a factor of more than 5 as measured by a saturation transfer technique. The in vivo value of the creatine/creatine phosphate ratio was estimated from the in vitro value (in perchloric acid extracts), assuming that the in vivo ratio of the creatine and creatine phosphate pool over the ATP and ADP pool was the same as the corresponding in vitro value. From the creatine/creatine phosphate ratio thus obtained, the value of the cytosolic ATP/ADP ratio was estimated for brains of adult rats and neonate rats. Unexpectedly the value in the latter was found to be smaller.  相似文献   

12.
To examine the role of changes in the distribution of the creatine kinase (CK) isoenzymes [BB, MB, MM, and mitochondrial CK (mito-CK)] on the creatine kinase reaction velocity in the intact heart, we measured the creatine kinase reaction velocity and substrate concentrations in hearts from neonatal rabbits at different stages of development. Between 3 and 18 days postpartum, total creatine kinase activity did not change, but the isoenzyme distribution and total creatine content changed. Hearts containing 0, 4, or 9% mito-CK activity were studied at three levels of cardiac performance: KCl arrest and Langendorff and isovolumic beating. The creatine kinase reaction velocity in the direction of MgATP production was measured with 31P magnetization transfer under steady-state conditions. Substrate concentrations were measured with 31P NMR (ATP and creatine phosphate) and conventional biochemical analysis (creatine) or estimated (ADP) by assuming creatine kinase equilibrium. The rate of ATP synthesis by oxidative phosphorylation was estimated with oxygen consumption measurements. These results define three relationships. First, the creatine kinase reaction velocity increased as mito-CK activity increased, suggesting that isoenzyme localization can alter reaction velocity. Second, the reaction velocity increased as the rate of ATP synthesis increased. Third, as predicted by the rate equation, reaction velocity increased with the 3-fold increase in creatine and creatine phosphate contents that occurred during development.  相似文献   

13.
Pulsed-gradient 31P NMR was used to measure the diffusion rates of phosphorus compounds in aqueous solution and in living muscles. The diffusion rates of creatine phosphate and inorganic phosphate in intact frog muscle cells were reduced by a factor of approximately 2 from those in aqueous solution, which suggests that the apparent intracellular viscosity is approximately 2 times larger than in aqueous solution.  相似文献   

14.
以酵母功能性β-1,3/1,6-葡聚糖为对照品,利用苯胺蓝和β-1,3/1,6-葡聚糖特异结合荧光特性,研究了葡聚糖荧光法测定时的各影响因素,建立了荧光法测定食药用菌功能性β-葡聚糖的方法。pH9.6缓冲液,80℃条件下避光反应15min,室温30min冷却后,398nm激发波长,508nm发射波长,20℃下进行荧光测定。在测定浓度2-20μg/mL范围内,荧光强度与浓度具有良好的线性关系(R2=0.9977),其中检出限为45μg/L,测定精密度和加样回收率良好,相对标准偏差(RSD)分别为1.86%和3.40%,并与酶法进行了比对验证,一致性良好,且荧光法更为节约时间和成本,并对灰树花菌、巴氏蘑菇、香菇和鲍氏针层孔菌四种食药用菌β-葡聚糖提取样品进行了葡聚糖纯度和提取率测定。  相似文献   

15.
Summary Time course measurements of glycogen, lactate, creatine phosphate, the adenylates and ammonia contents were made during the transition from rest to various levels of activity in fish (Macrozoarces americanus) white muscle. The muscle was perturbed by direct electrical stimulation resulting in sustained tetanus, 60 contractions/min or 20 contractions/min. Increased ATP demand was invariably associated with decreases in creatine phosphate followed by increases in lactate levels. The contribution of creatine phosphate to anaerobic energy production was equivalent to that of anaerobic glycolysis. In addition, decreases in creatine phosphate content may play an important role in the facilitation of glycolytic flux presumably by relief of inhibition of phosphofructokinase. Under some conditions the work transition was associated with an initial transient increase in ATP content which could not be accounted for by decreases in ADP and AMP levels. Furthermore, ammonia content was noted to oscillate during the work period, a feature which is fundamentally different from that which occurs in mammalian muscle.  相似文献   

16.
The role of the creatine phosphate shuttle in the energetics of muscle protein synthesis in isolated polysomes, from rat hindlimb muscle, was studied. Triton X-100-treated polysomes, following their centrifugation through a 1 M sucrose gradient, contained 38 mU/mg RNA of bound creatine kinase. In the presence of pH 5 enzyme (obtained from rat liver), 0.5 mM ATP, and 1 microM GTP, amino acid (leucine) incorporation by polysomes in the presence of 8 mM creatine phosphate was twice that in the presence of an exogenous ATP regenerating system of 10 mM phospho(enol)pyruvate and 10 U/ml pyruvate kinase. Since added creatine kinase had no effect on incorporation supported by creatine phosphate it is clear that endogenous creatine kinase allows sufficient regeneration of ATP. These data also suggest that nucleoside diphosphokinase must have been associated with the polysome for phosphate was transferred to GTP from [33P]creatine phosphate, and the specific activities of ATP and GTP increased at equal rates, reaching the specific activity of creatine phosphate at 8 min. We conclude that skeletal muscle polysomes have bound creatine kinase activity and they act as terminals for the creatine phosphate energy shuttle. Creatine phosphate regenerates GTP, probably through an intermediate reaction catalyzed by nucleoside diphosphokinase. This provided an added support for the hypothesis of compartmentation of enzymes and substrates and that the transport form of energy between the mitochondria and energy utilizing sites in muscle is creatine phosphate rather than ATP, which extends the general role of the creatine phosphate energy shuttle.  相似文献   

17.
The tension-time index (TTI) has been used to estimate mechanical load, energy utilization, blood flow, and susceptibility to fatigue in contracting muscle. The TTI can be defined, for a rhythmically contracting muscle, as the product of average force development divided by maximum tetanic force times duty cycle [contraction time / (contraction + relaxation time)]. In this study, the TTI concept was applied to isolated diaphragm via a method that allowed TTI to be clamped at a predetermined value. The hypothesis tested was that, at constant TTI, muscle energetics and the extent of fatigue would vary with stimulation frequency. Isolated diaphragm strips were stimulated at 25, 50, 75, or 100 Hz for 4 min, one per second. Duty cycle was continuously adjusted to maintain TTI at 0.07, which was near the highest TTI tolerated for 4 min, at 20-Hz stimulation. At the end of the fatigue run, muscles were either immediately frozen for determination ATP, creatine, and creatine phosphate concentrations (n = 6) or stimulated for evaluation of low- and high-frequency fatigue (n = 5). Results demonstrated no difference in the extent of fatigue or in the final ATP and creatine phosphate concentrations between groups. Large within-run increases in duty cycle were required at low stimulation frequencies, but only small increases were required at the highest frequencies. The results demonstrate that, at a constant TTI, similar fatigue properties predominate at all stimulation frequencies with no clear distinction between high- and low-frequency fatigue. The method of clamping TTI during fatigue may be useful for evaluating energetics and contractile function between treatment groups in isolated muscle when treatment influences baseline contractile characteristics.  相似文献   

18.
Phosphorus nuclear magnetic resonance measurements at 129MHz have been made on small beating rat hearts, perfused by the Langendorff technique. Good spectra, giving the levels of ATP, creatine phosphate and inorganic phosphate can be collected in as little as 10–20min and the heart can be maintained in a steady state in the spectrometer for at least 5 hours. In a good preparation, the ratios of the β-phosphate of ATP to creatine phosphate and inorganic phosphate are 1:1.8:1.8 which compare well with the data obtained by analyzing a freeze-clamped extract by NMR. The recovery of metabolites, after the induction of global ischaemia, has been followed.  相似文献   

19.
Simultaneous 23Na and 31P NMR spectra were obtained from a number of yeast suspensions. Prior to NMR spectroscopy, the yeast cells were Na-loaded: this replaced some of the intracellular K+ with Na+. These cells were also somewhat P-deficient in that they had no polyphosphate species visible in the 31P NMR spectrum. In the NMR experiments, the Na-loaded cells were suspended in media which contained inorganic phosphate, very low Na+, and a shift reagent for the Na+ NMR signal. The media differed as to whether dioxygen, glucose, or K+ was present individually or in combinations and as to whether the medium was buffered or not. The NMR spectra revealed that the cells always lost Na+ and gained phosphorus. However, the nature of the Na+ efflux time course and the P metabolism differed depending on the medium. The Na+ efflux usually proceeded linearly until the amount of Na+ extruded roughly equalled the amount of NH4+ and orthophosphate initially present in the medium (external phosphate was added as NH4H2PO4). Thus, we presume this first phase reflects a Na+ for NH4+ exchange. The Na+ efflux then entered a transition phase, either slowing, ceasing, or transiently reversing, before resuming at about the same value as that of the first phase. We presume that this last phase involves the simultaneous extrusion of intracellular anions as reported in the literature. The phosphorus metabolism was much more varied. In the absence of exogenous glucose, the P taken up accumulated first as intracellular inorganic phosphate; otherwise, it accumulated first in the "sugar phosphate" pool. In most cases, at least some of the P left the sugar phosphate pool and entered the polyphosphate reservoir in the vacuole. However, this never happened until the phase probably representing Na+ for NH4+ exchange was completed, and the P in the polyphosphate pool never remained there permanently but always eventually reverted back to the sugar phosphate pool. These changes are interpreted in terms of hierarchical energy demands on the cells under the different conditions. In particular, the energy for the Na+ for NH4+ exchange takes precedence over that required to produce and store polyphosphate. This conclusion is supported by the fact that when the cells are "forced" to exchange K+, as well as NH4+, for Na+ (by the addition of 5 times as much K+ to the NH4+-containing medium), polyphosphates are never significantly formed, and the initial linear Na+ efflux phase persists possibly 6 times as long.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The subcellular compartmentalization of adenosine 5'-triphosphate (ATP) in isolated perfused rat heart and its relation to energy depletion in ischemia were examined by 31P nuclear magnetic resonance (31P-NMR) spectroscopy and chemical analyses. The signal intensities of the beta-phosphate of ATP and creatine phosphate in the 31P-NMR were standardized by the intracellular volume ratio measured with 23Na-NMR to determine the actual content of each. During aerobic perfusion the ATP content determined by NMR (13.7 +/- 2.2 mumol/g dry weight) was significantly lower than that found by chemical analysis (22.4 +/- 0.7 mumol/g dry weight), while the creatine phosphate contents determined by the two methods were the same. During ischemia at 33 degrees C, the signal of the beta-phosphate of ATP in the 31P-NMR spectrum decreased progressively, disappearing completely after 16 min. But at this time 5.7 +/- 1.7 mumol/g dry weight of myocardial ATP was still detected by chemical analysis. These results indicated that there were two different compartments of intracellular ATP in the heart, only one of which is detectable by 31P-NMR spectroscopy, and that during ischemia the ATP that is detectable, which seems to be the free ATP in the cytosol, decreased more rapidly than the ATP in the other compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号