首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary We have previously shown that the human red cell glucose transport protein and the anion exchange protein, band 3, are in close enough contact that information can be transmitted from the glucose transport protein to band 3. The present experiments were designed to show whether information could be transferred in the reverse direction, using changes in tryptophan fluorescence to report on the conformation of the glucose transport protein. To see whether tryptophan fluorescence changes could be attributed to the glucose transport protein, we based our experiments on procedures used by Helgerson and Carruthers [Helgerson, A.L., Carruthers, A., (1987)J. Biol. Chem. 262:5464–5475] to displace cytochalasin B (CB), the specificd-glucose transport inhibitor, from its binding site on the inside face of the glucose transport protein, and we showed that these procedures modified tryptophan fluorescence. Addition of 75mm maltose, a nontransportable disaccharide which also displaces CB, caused a timedependent biphasic enhancement of tryptophan fluorescence in fresh red cells, which was modulated by the specific anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate). In a study of nine additional disaccharides, we found that both biphasic kinetics and DBDS effects depended upon specific disaccharide conformation, indicating that these two effects could be attributed to a site sensitive to sugar conformation. Long term (800 sec) experiments revealed that maltose binding (±DBDS) caused a sustained damped anharmonic oscillation extending over the entire 800 sec observation period. Mathematical analysis of the temperature dependence of these oscillations showed that 2 m DBDS increased the damping term activation energy, 9.5±2.8 kcal mol–1 deg–1, by a factor of four to 39.7±5.1 kcal mol–1 deg–1, providing strong support for the view that signalling between the glucose transport protein and band 3 goes in both directions.  相似文献   

2.
The role of receptor recognition in the emergence of virulent viruses was investigated in the infection of severe combined immunodeficient (SCID) mice by the apathogenic prototype strain of the parvovirus minute virus of mice (MVMp). Genetic analysis of isolated MVMp viral clones (n = 48) emerging in mice, including lethal variants, showed only one of three single changes (V325M, I362S, or K368R) in the common sequence of the two capsid proteins. As was found for the parental isolates, the constructed recombinant viruses harboring the I362S or the K368R single substitutions in the capsid sequence, or mutations at both sites, showed a large-plaque phenotype and lower avidity than the wild type for cells in the cytotoxic interaction with two permissive fibroblast cell lines in vitro and caused a lethal disease in SCID mice when inoculated by the natural oronasal route. Significantly, the productive adsorption of MVMp variants carrying any of the three mutations selected through parallel evolution in mice showed higher sensitivity to the treatment of cells by neuraminidase than that of the wild type, indicating a lower affinity of the viral particle for the sialic acid component of the receptor. Consistent with this, the X-ray crystal structure of the MVMp capsids soaked with sialic acid (N-acetyl neuraminic acid) showed the sugar allocated in the depression at the twofold axis of symmetry (termed the dimple), immediately adjacent to residues I362 and K368, which are located on the wall of the dimple, and approximately 22 A away from V325 in a threefold-related monomer. This is the first reported crystal structure identifying an infectious receptor attachment site on a parvovirus capsid. We conclude that the affinity of the interactions of sialic-acid-containing receptors with residues at or surrounding the dimple can evolutionarily regulate parvovirus pathogenicity and adaptation to new hosts.  相似文献   

3.
Polyomaviruses are small, nonenveloped DNA tumor viruses with restricted host ranges. Virus binding to cell surface receptors is one determinant of viral tropism. Although murine polyomavirus is among the best characterized viruses, little is known about the sialic acid-containing receptor and its interaction with viral particles. By using nonradioactive virus binding assays as recently described for the B-lymphotropic papovavirus, murine polyomavirus particles were found to bind in a saturable and noncooperative manner to 25,000 receptors per 3T6 mouse fibroblast. The virus-receptor interaction at 4 degrees C was of high affinity (Kd = 1.8 x 10(-11) M), very fast (k1 = 1.7 x 10(7) M(-1) s(-1)), and stable (half-life = 38 min). Elongation of the N-acyl side chain of sialic acid by biosynthetic modulation with synthetic precursor analogs has been shown for other polyomaviruses to influence both sialic acid-dependent binding and infection (O. T. Keppler, P. Stehling, M. Herrmann, H. Kayser, D. Grunow, W. Reutter, and M. Pawlita, J. Biol. Chem. 270:1308-1314, 1995). In 3T6 cells in which about one-third of the sialic acids were modified, infection and binding of polyomavirus particles were significantly reduced. The number of receptors per cell was decreased to 18,000, with the remaining receptors displaying the same affinity as in untreated cells. Molecular modeling studies based on the three-dimensional structure of a mouse polyomavirus-sialyllactose complex recently solved by T. Stehle and coworkers (T. Stehle, Y. W. Yan, T. L. Benjamin, and S. C. Harrison, Nature 369:160-163, 1994) were performed. They suggest that the elongation of the N-acyl side chain by a single methylene group leads to steric hinderence, with the peptide backbone of a loop walling the tip of the shallow sialic acid binding groove. This collision appears to be incompatible with functional binding. The data are taken as a basis to discuss possible features of the organization and topology of the cellular receptor for mouse polyomavirus.  相似文献   

4.
Conformations of polyomavirus (Py) major capsid protein VP1 were analyzed by circular dichroism (CD) and fluorescence spectroscopy in the presence of sodium dodecyl sulfate (SDS). Binding of PyVP1 to SDS induced marked conformational changes of PyVP1, which were reflected on the CD and fluorescence spectra. Abrupt changes in both optical properties occurred within the narrow ranges of SDS concentrations with the transition midpoints closely related to SDS micelle formation. Analysis of circular dichroism spectra showed that the contents of alpha-helices, beta-sheets, beta-turns and random coils in PyVP1 varied upon addition of SDS, demonstrating the exquisite sensitivity of the conformations of the protein to the environment. The interactions of PyVP1 with SDS were shown to be dependent on the ionic strength of the protein solution, suggesting that both hydrophobic and electrostatic forces contribute to the PyVP1-SDS complex formation. The SDS-induced conformational changes of PyVP1 appeared to be a two-stage process.  相似文献   

5.
The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family.  相似文献   

6.
Phosphoglucose isomerase (PGI; EC 5.3.1.9) is the second enzyme in glycolysis, where it catalyzes the isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate. It is the same protein as autocrine motility factor, differentiation and maturation mediator, and neuroleukin. Here, we report a new X-ray crystal structure of rabbit PGI (rPGI) without ligands bound in its active site. The structure was solved at 1.8A resolution by isomorphous phasing with a previously solved X-ray crystal structure of the rPGI dimer containing 6-phosphogluconate in its active site. Comparison of the new structure to previously reported structures enables identification of conformational changes that occur during binding of substrate or inhibitor molecules. Ligand binding causes an induced fit of regions containing amino acid residues 209-215, 245-259 and 385-389. This conformational change differs from the change previously reported to occur between the ring-opening and isomerization steps, in which the helix containing residues 513-521 moves toward the bound substrate. Differences between the liganded and unliganded structures are limited to the region within and close to the active-site pocket.  相似文献   

7.
Conformational changes induced by binding of divalent cations to calregulin   总被引:3,自引:0,他引:3  
Scatchard analysis of equilibrium dialysis studies have revealed that in the presence of 3.0 mM MgCl2 and 150 mM KCl, calregulin has a single binding site for Ca2+ with an apparent dissociation constant (apparent Kd) of 0.05 microM and 14 binding sites for Zn2+ with apparent Kd(Zn2+) of 310 microM. Ca2+ binding to calregulin induces a 5% increase in the intensity of intrinsic fluorescence and a 2-3-nm blue shift in emission maximum. Zn2+ binding to calregulin causes a dose-dependent increase of about 250% in its intrinsic fluorescence intensity and a red shift in the emission maximum of about 11 nm. Half-maximal wavelength shift occurs at 0.4 mol of Zn2+/mol of calregulin, and 100% of the wavelength shift is complete at 2 mol of Zn2+/mol of calregulin. In the presence of Zn2+ and calregulin the fluorescence intensity of the hydrophobic fluorescent probe 8-anilino-1-napthalenesulfonate (ANS) was enhanced 300-400% with a shift in emission maximum from 500 to 480 nm. Half-maximal Zn2+-induced shift in ANS emission maximum occurred at 1.2 mol of Zn2+/mol of calregulin, and 100% of this shift occurred at 6 mol of Zn2+/mol of calregulin. Of 12 cations tested, only Zn2+ and Ca2+ produced changes in calregulin intrinsic fluorescence, and none of these metal ions could inhibit the Zn2+-induced red shift in intrinsic fluorescence emission maximum. Furthermore, none of these cations could inhibit or mimic the Zn2+-induced blue shift in ANS emission maximum. These results suggest that calregulin contains distinct and specific ligand-binding sites for Ca2+ and Zn2+. While Ca2+ binding results in the movement of tryptophan away from the solvent, Zn2+ causes a movement of tryptophan into the solvent and the exposure of a domain with considerable hydrophobic character.  相似文献   

8.
9.
10.
11.
The effects of amino acid starvation on polysome conformation were analyzed comparatively in stringent (relA+) and relaxed (relA) bacteria by measuring the accessibility in vitro of ribosomal proteins to reductive methylation. In polysomes of stringent cells, the conformational state of two proteins (L13 and L29) appeared significantly changed by starvation. In polysomes isolated from relaxed mutants, the accessibility of five proteins (L5, L13, L29, L31 and L32) was found modified.  相似文献   

12.
Thymomas induced by polyomavirus strain PTA in mice are known to express the major capsid protein VP-1. Since the expression of a late structural protein such as VP-1 is considered a sign of virus replication, the present work attempted to clarify the implication of the presence of this protein in tumor cells. Electron microscopy of tumors showed a striking absence of viral particles in the vast majority of the cells. However, immunoelectron microscopy of the same samples demonstrated intranuclear VP-1 in most cells despite the absence of viral particles. Very little infectious virus was recovered from tumors. A change in the electrophoretic mobility of VP-1 from thymomas was detected compared with VP-1 from productively infected cells. The data presented in this work prove that the expression of VP-1 in polyomavirus-induced tumors is not synonymous with the presence of infectious virus, suggesting a possible defect in viral encapsidation.  相似文献   

13.
《Biophysical journal》2021,120(21):4672-4681
Fatty acid binding proteins (FABPs) can facilitate the transfer of long-chain fatty acids between intracellular membranes across considerable distances. The transfer process involves fatty acids, their donor membrane and acceptor membrane, and FABPs, implying that potential protein-membrane interactions exist. Despite intensive studies on FABP-membrane interactions, the interaction mode remains elusive, and the protein-membrane association and dissociation rates are inconsistent. In this study, we used nanodiscs (NDs) as mimetic membranes to investigate FABP-membrane interactions. Our NMR experiments showed that human intestinal FABP interacts weakly with both negatively charged and neutral membranes, but it prefers the negatively charged one. Through simultaneous analysis of NMR relaxation in the rotating-frame (R1ρ), relaxation dispersion, chemical exchange saturation transfer, and dark-state exchange saturation transfer data, we estimated the affinity of the protein to negatively charged NDs, the dissociation rate, and apparent association rate. We further showed that the protein in the ND-bound state adopts a conformation different from the native structure and the second helix is very likely involved in interactions with NDs. We also found a membrane-induced FABP conformational state that exists only in the presence of NDs. This state is native-like, different from other conformational states in structure, unbound to NDs, and in dynamic equilibrium with the ND-bound state.  相似文献   

14.
To identify sialic acid binding proteins from complex proteomes, three photocrosslinking affinity-based probes were constructed using Neu5Ac (5 and 6) and Neu5Ac2en (7) scaffolds. Kinetic inhibition assays and Western blotting revealed the Neu5Ac2en-based 7 to be an effective probe for the labeling of a purified gut microbial sialidase (BDI_2946) and a purified human sialic acid binding protein (hCD33). Additionally, LC–MS/MS affinity-based protein profiling verified the ability of 7 to enrich a low-abundance sialic acid binding protein (complement factor H) from human serum thus validating the utility of this probe in a complex context.  相似文献   

15.
JC virus (JCV) and BK virus (BKV) are human polyomaviruses that infect approximately 85% of the population worldwide [1,2]. JCV is the underlying cause of the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML), a condition resulting from JCV induced lytic destruction of myelin producing oligodendrocytes in the brain [3]. BKV infection of kidneys in renal transplant recipients results in a gradual loss of graft function known as polyomavirus associated nephropathy (PVN) [4]. Following the identification of these viruses as the etiological agents of disease, there has been greater interest in understanding the basic biology of these human pathogens [5,6]. Recent advances in the field have shown that viral entry of both JCV and BKV is dependent on the ability to interact with sialic acid. This review focuses on what is known about the human polyomaviruses and the role that sialic acid plays in determining viral tropism.  相似文献   

16.
《Cell reports》2023,42(2):112114
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

17.
D Chang  X Cai    R A Consigli 《Journal of virology》1993,67(10):6327-6331
The DNA binding properties of the polyomavirus structural proteins VP1, VP2, and VP3 were studied by Southwestern analysis. The major viral structural protein VP1 and host-contributed histone proteins of polyomavirus virions were shown to exhibit DNA binding activity, but the minor capsid proteins VP2 and VP3 failed to bind DNA. The N-terminal first five amino acids (Ala-1 to Lys-5) were identified as the VP1 DNA binding domain by genetic and biochemical approaches. Wild-type VP1 expressed in Escherichia coli (RK1448) exhibited DNA binding activity, but the N-terminal truncated VP1 mutants (lacking Ala-1 to Lys-5 and Ala-1 to Cys-11) failed to bind DNA. The synthetic peptide (Ala-1 to Cys-11) was also shown to have an affinity for DNA binding. Site-directed mutagenesis of the VP1 gene showed that the point mutations at Pro-2, Lys-3, and Arg-4 on the VP1 molecule did not affect DNA binding properties but that the point mutation at Lys-5 drastically reduced DNA binding affinity. The N-terminal (Ala-1 to Lys-5) region of VP1 was found to be essential and specific for DNA binding, while the DNA appears to be non-sequence specific. The DNA binding domain and the nuclear localization signal are located in the same N-terminal region.  相似文献   

18.
Movements of different areas of polypeptide chains within F-actin monomers induced by S1 or pPDM-S1 binding were studied by polarized fluorimetry. Thin filaments of ghost muscle were reconstructed by adding G-actin labeled with fluorescent probes attached alternatively to different sites of actin molecule. These sites were: Cys-374 labeled with 1,5-IAEDANS, TMRIA or 5-IAF; Lys-373 labeled with NBD-Cl; Lys-113 labeled with Alexa-488; Lys-61 labeled with FITC; Gln-41 labeled with DED and Cys-10 labeled with 1,5-IAEDANS, 5-IAF or fluorescein-maleimid. In addition, we used TRITC-, FITC-falloidin and e-ADP that were located, respectively, in filament groove and interdomain cleft. The data were analysed by model-dependent and model-independent methods (see appendixes). The orientation and mobility of fluorescent probes were significantly changed when actin and myosin interacted, depending on fluorophore location and binding site of actomyosin. Strong binding of S with actin leads to 1) a decrease in the orientation of oscillators of derivatives of falloidin (TRITC-falloidin, FITC-falloidin) and actin-bound nucleotide (e-ADP); 2) an increase in the orientation of dye oscillators located in the "front' surface of the small domain (where actin is viewed in the standard orientation with subdomains 1/2 and 3/4 oriented to the right and to the left, respectively); 3) a decrease in the angles of dye oscillators located on the "back" surface of subdomain-1. In contrast, a weak binding of S1 to actin induces the opposite effects in orientation of these probes. These data suggest that during the ATP hydrolysis cycle myosin heads induce a change in actin monomer (a tilt and twisting of its small domain). Presumably, these alterations in F-actin conformation play an important role in muscle contraction.  相似文献   

19.
The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.  相似文献   

20.
Binding of stigmatellin, an inhibitor of the Q(o) site of the bc-type complexes, has been shown to induce large conformational changes of the Rieske protein in the respiratory bc(1) complex (Kim, H., Xia, D., Yu, C. A., Xia, J. Z., Kachurin, A. M., Zhang, L., Yu, L., and Deisenhofer, J. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8026-8033; Iwata, S., Lee, J. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S., and Jap, B. K. (1998) Science 281, 64-71; Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y. I., Kim, K. K., Hung, L. W., Crofts, A. R., Berry, E. A., and Kim, S. H. (1998) Nature 392, 677-684). Such a movement seems necessary to shuttle electrons from the membrane-soluble quinol to the extramembrane heme of cytochrome c(1). To see whether similar changes occur in the related photosynthetic b(6)f complex, we have studied the effect of the binding of stigmatellin to the eukaryotic b(6)f complex by electron crystallography. Comparison of projection maps of thin three-dimensional crystals prepared with or without stigmatellin, and either negatively stained or embedded in glucose, reveals a similar type of movement to that observed in the bc(1) complex and suggests also the occurrence of conformational changes in the transmembrane region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号