首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chaperonesare an essential component of a cell's ability to respond to environmental challenges. Chaperones have been studied primarily in bacteria, but in recent years it has become apparent that some classes of chaperones either are very divergent in bacteria relative to archaea and eukaryotes or are missing entirely. In contrast, a high degree of similarity was found between the chaperonins of archaea and those of the eukaryotic cytosol, which has led to the establishment of archaeal model systems. The archaeon most extensively used for such studies is Thermoplasma acidophilum, which thrives at 59 degrees C and pH 2. Here we review information on its chaperone complement in light of the recently determined genome sequence.  相似文献   

2.
Aspartate racemase from Streptococcus thermophilus contains no pyridoxal 5'-phosphate or other cofactors such as FAD, NAD+, and metal ions. It was affected by neither carbonyl reagents such as hydroxylamine nor sodium borohydride but was strongly inhibited by iodoacetamide and other thiol reagents. Aspartate, cysteate, and cysteine sulfinate were the only substrates. The Km values for L- and D-aspartate were 35 and 8.7 mM, respectively. The enzyme catalyzed the exchange of alpha-hydrogen of the substrate with the solvent hydrogen. Racemization of L-aspartate in 2H2O showed an overshooting in the optical rotation of aspartate before the substrate was fully racemized. This shows that the removal of alpha-hydrogen of the substrate is at least partially rate-determining. When L- or D-aspartate was incubated with aspartate racemase in tritiated water, tritium was incorporated preferentially into the product enantiomer. The results strongly suggest that aspartate racemase contains two hydrogen acceptors.  相似文献   

3.
Abstract Plasmids were detected in isolates of an acidothermophilic archaebacterium Thermoplasma acidophilum . One of the plasmids, pTA1, was characterized. The plasmid was a circular DNA of 15.2 kbp. A physical map was constructed using three restriction endonucleases. A copy number of this plasmid was estimated to be 7–13 per cell. The homologous sequence was not found in the chromosomal DNA of the host cell.  相似文献   

4.
D-aspartate is present at high concentrations in the tissues of Scapharca broughtonii, and its production depends on aspartate racemase. This enzyme is the first aspartate racemase purified from animal tissues and unique in its pyridoxal 5'-phosphate (PLP)-dependence in contrast to microbial aspartate racemases thus far characterized. The enzyme activity is markedly increased in the presence of AMP and decreased in the presence of ATP. To analyze the structure-function relationship of the enzyme further, we cloned the cDNA of aspartate racemase, and then purified and characterized the recombinant enzyme expressed in Escherichia coli. The cDNA included an open reading frame of 1,017 bp encoding a protein of 338 amino acids, and the deduced amino acid sequence contained a PLP-binding motif. The sequence exhibits the highest identity (43-44%) to mammalian serine racemase, followed mainly by threonine dehydratase. These relationships are fully supported by phylogenetic analyses of the enzymes. The active recombinant aspartate racemase found in the Escherichia coli extract represented about 10% of total bacterial protein and was purified to display essentially identical physicochemical and catalytic properties with those of the native enzyme. In addition, the enzyme showed a dehydratase activity toward L-threo-3-hydroxyaspartate, similar to the mammalian serine racemase that produces pyruvate from D- and L-serine.  相似文献   

5.
We purified a geranylgeranylglyceryl phosphate (GGGP) synthase from Thermoplasma acidophilum by several steps of chromatography. Based on the proteinase-fragment-mass-pattern analysis of the SDS-PAGE band of the partially purified protein, the DNA sequence encoding the protein was identified from the whole genome sequence database of the species. The gene encoding GGGP synthase in T. acidophilum was cloned after PCR amplification of the gene from the genomic DNA. The recombinant enzyme was expressed in Escherichia coli and purified. A single band with a molecular mass of 27 kDa was obtained by SDS-PAGE analysis. The apparent native molecular mass of the enzyme was about 50 kDa based on gel filtration chromatography, suggesting that the enzyme is active as a homodimer. As the GGGP synthase from Methanobacterium thermoautotrophicum has been reported as a pentamer, the enzymes of the two organisms have different oligomeric structures. Other characteristics, including substrate specificity, are similar for the GGGPs of these organisms.  相似文献   

6.
Thermoplasma acidophilum is sensitive to the antibiotic drug novobiocin, which inhibits DNA gyrase. We characterized DNA gyrases from T. acidophilum strains in vitro. The DNA gyrase from a novobiocin-resistant strain and an engineered mutant were less sensitive to novobiocin. The novobiocin-resistant gyrase genes might serve as T. acidophilum genetic markers.  相似文献   

7.
D-aspartate (D-Asp) is found in specific neurons, transported to neuronal terminals and released in a stimulation-dependent manner. Because D-Asp formation is not well understood, determining its function has proved challenging. Significant levels of D-Asp are present in the cerebral ganglion of the F- and C-clusters of the invertebrate Aplysia californica, and D-Asp appears to be involved in cell-cell communication in this system. Here, we describe a novel protein, DAR1, from A. californica that can convert aspartate and serine to their other chiral form in a pyridoxal 5'-phosphate (PLP)-dependent manner. DAR1 has a predicted length of 325 amino acids and is 55% identical to the bivalve aspartate racemase, EC 5.1.1.13, and 41% identical to the mammalian serine racemase, EC 5.1.1.18. However, it is only 14% identical to the recently reported mammalian aspartate racemase, DR, which is closely related to glutamate-oxaloacetate transaminase, EC 2.6.1.1. Using whole-mount immunohistochemistry staining of the A. californica central nervous system, we localized DAR1-like immunoreactivity to the medial region of the cerebral ganglion where the F- and C-clusters are situated. The biochemical and functional similarities between DAR1 and other animal serine and aspartate racemases make it valuable for examining PLP-dependent racemases, promising to increase our knowledge of enzyme regulation and ultimately, D-serine and D-Asp signaling pathways.  相似文献   

8.
9.
Minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in archaea. Studies have shown that the MCM complex from the thermoacidophilic euryarchaeon Thermoplasma acidophilum (TaMCM) has some properties not reported in other archaeal MCM helicases. Here, the biochemical properties of the TaMCM are studied. The protein binds single-stranded DNA, has DNA-dependent ATPase activity and ATP-dependent 3′ → 5′ helicase activity. The optimal helicase conditions with regard to temperature, pH and salinity are similar to the intracellular conditions in T. acidophilum. It is also found that about 1,000 molecules of TaMCM are present per actively growing cell. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
The kinetics and mechanism of the citrate synthase from a moderate thermophile, Thermoplasma acidophilum (TpCS), are compared with those of the citrate synthase from a mesophile, pig heart (PCS). All discrete steps in the mechanistic sequence of PCS can be identified in TpCS. The catalytic strategies identified in PCS, destabilization of the oxaloacetate substrate carbonyl and stabilization of the reactive species, acetyl-CoA enolate, are present in TpCS. Conformational changes, which allow the enzyme to efficiently catalyze both condensation of acetyl-CoA thioester and subsequently hydrolysis of citryl-CoA thioester within the same active site, occur in both enzymes. However, significant differences exist between the two enzymes. PCS is a characteristically efficient enzyme: no internal step is clearly rate-limiting and the condensation step is readily reversible. TpCS is a less efficient catalyst. Over a broad temperature range, inadequate stabilization of the transition state for citryl-CoA hydrolysis renders this step nearly rate-limiting for the forward reaction of TpCS. Further, excessive stabilization of the citryl-CoA intermediate renders the condensation step nearly irreversible. Values of substrate and solvent deuterium isotope effects are consistent with the kinetic model. Near its temperature optimum (70 degrees C), there is a modest increase in the reversibility of the condensation step for TpCS, but reversibility still falls short of that shown by PCS at 37 degrees C. The root cause of the catalytic inefficiency of TpCS may lie in the lack of protein flexibility imposed by the requirement for thermal stability of the protein itself or its temperature-labile substrate, oxaloacetate.  相似文献   

11.
Replicative DNA helicases are ring-shaped hexamers that play an essential role in chromosomal DNA replication. They unwind the two strands of the duplex DNA and provide the single-stranded (ss) DNA substrate for the polymerase. The minichromosome maintenance (MCM) proteins are thought to function as the replicative helicases in eukarya and archaea. The proteins of only a few archaeal organisms have been studied and revealed that although all have similar amino acid sequences and overall structures they differ in their biochemical properties. In this report the biochemical properties of the MCM protein from the archaeon Thermoplasma acidophilum is described. The enzyme has weak helicase activity on a substrate containing only a 3′-ssDNA overhang region and the protein requires a forked DNA structure for efficient helicase activity. It was also found that the helicase activity is stimulated by one of the two T.acidophilum Cdc6 homologues. This is an interesting observation as it is in sharp contrast to observations made with MCM and Cdc6 homologues from other archaea in which the helicase activity is inhibited when bound to Cdc6.  相似文献   

12.
Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at pH1.8 and 56°C and has no cell wall. Plasmid pTA1 was found in some strains of the species. We sequenced plasmid pTA1 and analyzed the open reading frames (ORFs). pTA1 was found to be a circular DNA molecule of 15,723 bp. Eighteen ORFs were found; none of the gene products except ORF1 had sequence similarity to known proteins. ORF1 showed similarity to Cdc6, which is involved in genome-replication initiation in Eukarya and Archaea. T. acidophilum has two Cdc6 homologues in the genome. The homologue found in pTA1 is most similar to Tvo3, one of the three Cdc6 homologues found in the genome of Thermoplasma volcanium, among all of the Cdc6 family proteins. The phylogenetic analysis suggested that plasmid pTA1 is possibly originated from the chromosomal DNA of Thermoplasma.  相似文献   

13.
The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-(14)C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum.  相似文献   

14.
Abstract

Asparaginases (ASNases) participate in the metabolism of all living organisms in the hydrolysis of free asparagines. Bacterial ASNases are used in cancer chemotherapy as they efficiently deplete amino acids. However, allergic reactions and silent inactivation represent critical limitations to their extended use. The rationale of this study was to identify, express, and characterize a plant-type L-ASNase from the archaeon Thermoplasma acidophilum as an enzyme with potentially improved characteristics. The Ta0338 orf was cloned into the pET28a(+) expression vector and overexpressed as a soluble protein with a molecular weight of 32 kDa. The quantity of recombinant L-ASNase produced in Escherichia coli was estimated as 9.68 mg/l. The purified protein showed evident autocatalytic processing of the zymogen at 4° and 37°C at physiological pH of 7.2 and clearly generated the expected alpha and beta subunits of 18 and 13 kDa, respectively. We propose that Ta-ASNase represents a potential biotechnological product for therapeutic purposes.  相似文献   

15.
The basic core structure of archaeal membrane lipids is 2,3-di-O-phytanyl-sn-glyceryl phosphate (archaetidic acid), which is formed by the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate. The reductase activity for the key enzyme in membrane lipid biosynthesis, 2,3-digeranylgeranylglycerophospholipid reductase, was detected in a cell free extract of the thermoacidophilic archaeon Thermoplasma acidophilum. The reduction activity was found in the membrane fraction, and FAD and NADH were required for the activity. The reductase was purified from a cell free extract by ultracentrifugation and four chromatographic steps. The purified enzyme showed a single band at ca. 45 kDa on SDS-PAGE, and catalyzed the formation of archaetidic acid from 2,3-di-O-geranylgeranylglyceryl phosphate. Furthermore, the enzyme also catalyzed the reduction of 2,3-di-O-geranylgeranylglyceryl phosphate analogues such as 2,3-di-O-phytyl-sn-glyceryl phosphate, 3-O-(2,3-di-O-phytyl-sn-glycero-phospho)-sn-glycerol and 2,3-di-O-phytyl-sn-glycero-phosphoethanolamine. The N-terminal 20 amino acid sequence of the purified enzyme was determined and was found to be identical to the sequence encoded by the Ta0516m gene of the T. acidophilum genome. The present study clearly demonstrates that 2,3-digeranylgeranylglycerophospholipid reductase is a membrane associated protein and that the hydrogenation of each double bond of 2,3-digeranylgeranylglycerophospholipids is catalyzed by a single enzyme.  相似文献   

16.
Functional and structural characterizations of pyridoxal 5′-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5′-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of d-amino acids. Unexpectedly, the proportion of d-aspartate to total aspartate was not very high. In contrast, both d-proline and d-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus.  相似文献   

17.
The aerobic archaea possess four closely spaced, adjacent genes that encode proteins showing significant sequence identities with the bacterial and eukaryal components comprising the 2-oxoacid dehydrogenase multi-enzyme complexes. However, catalytic activities of such complexes have never been detected in the archaea, although 2-oxoacid ferredoxin oxidoreductases that catalyze the equivalent metabolic reactions are present. In the current paper, we clone and express the four genes from the thermophilic archaeon, Thermoplasma acidophilum, and demonstrate that the recombinant enzymes are active and assemble into a large (M(r) = 5 x 10(6)) multi-enzyme complex. The post-translational incorporation of lipoic acid into the transacylase component of the complex is demonstrated, as is the assembly of this enzyme into a 24-mer core to which the other components bind to give the functional multi-enzyme system. This assembled complex is shown to catalyze the oxidative decarboxylation of branched-chain 2-oxoacids and pyruvate to their corresponding acyl-CoA derivatives. Our data constitute the first proof that the archaea possess a functional 2-oxoacid dehydrogenase complex.  相似文献   

18.
Actin, a central component of the eukaryotic cytoskeleton, plays a crucial role in determining cell shape in addition to several other functions. Recently, the structure of the archaeal actin homolog Ta0583, isolated from the archaeon Thermoplasma acidophilum, which lacks a cell wall, was reported by Roeben et al. (J. Mol. Biol. 358:145-156, 2006). Here we show that Ta0583 assembles into bundles of filaments similar to those formed by eukaryotic actin. Specifically, Ta0583 forms a helix with a filament width of 5.5 nm and an axial repeating unit of 5.5 nm, both of which are comparable to those of eukaryotic actin. Eukaryotic actin shows a greater resemblance to Ta0583 than to bacterial MreB and ParM in terms of polymerization characteristics, such as the requirement for Mg(2+), critical concentration, and repeating unit size. Furthermore, phylogenetic analysis also showed a closer relationship between Ta0583 and eukaryotic actin than between MreB or ParM and actin. However, the low specificity of Ta0583 for nucleotide triphosphates indicates that Ta0583 is more primitive than eukaryotic actin. Taken together, our results suggest that Ta0583 retains the ancient characteristics of eukaryotic actin.  相似文献   

19.
Those aerobic archaea whose genomes have been sequenced possess a single 4-gene operon that, by sequence comparisons with Bacteria and Eukarya, appears to encode the three component enzymes of a 2-oxoacid dehydrogenase multienzyme complex. However, no catalytic activity of any such complex has ever been detected in the Archaea. In the current paper, we have cloned and expressed the first two genes of this operon from the thermophilic archaeon, Thermoplasma acidophilum. We demonstrate that the protein products form an alpha2beta2 hetero-tetramer possessing the decarboxylase catalytic activity characteristic of the first component enzyme of a branched-chain 2-oxoacid dehydrogenase multienzyme complex. This represents the first report of the catalytic function of these putative archaeal multienzyme complexes.  相似文献   

20.
Summary Substantial concentrations of D-aspartate were found in several tissues of Scapharca broughtonii together with approximately equal concentrations ofl-aspartate. The foot and mantle extracts also contained an aspartate racemase activity. The formation ofl-aspartate from the Denantiomer by the foot extract was apparently slower than the reverse reaction, and this unbalance seemed to be due to the presence of an enzyme activity which rapidly convertedl-aspartate tol-alanine. The possible role of D-aspartate in the anaerobiosis was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号