首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of the amino acid sequence of rat liver NADPH-cytochrome P-450 oxidoreductase with that of flavoproteins of known three-dimensional structure suggested that residues Tyr-140 and Tyr-178 are involved in binding of FMN to the protein. To test this hypothesis, NADPH-cytochrome P-450 oxidoreductase was expressed in Escherichia coli using the expression-secretion vector pIN-III-ompA3, and site-directed mutagenesis was employed to selectively alter these residues and demonstrate that they are major determinants of the FMN-binding site. Bacterial expression produced a membrane-bound 80-kDa protein containing 1 mol each of FMN and FAD per mol of enzyme, which reduced cytochrome c at a rate of 51.5 mumol/min/mg of protein and had absorption spectra and kinetic properties very similar to those of the rat liver enzyme. Replacement of Tyr-178 with aspartate abolished FMN binding and cytochrome c reductase activity. Incubation with FMN increased catalytic activity to a maximum of 8.6 mumol/min/mg of protein. Replacement of Tyr-140 with aspartate did not eliminate FMN binding, but reduced cytochrome c reductase activity about 5-fold, suggesting that FMN may be bound in a conformation which does not permit efficient electron transfer. Substitution of phenylalanine at either position 140 or 178 had no effect on FMN content or catalytic activity. The FAD level in the Asp-178 mutant was also decreased, suggesting that FAD binding is dependent upon FMN; FAD incorporation may occur co-translationally and require prior formation of an intact FMN domain.  相似文献   

2.
The reactions of several active site mutant forms of bacterial morphinone reductase (MR) with NADH and 2-cyclohexen-1-one as substrates have been studied by stopped-flow and steady-state kinetic methods and redox potentiometry. The enzymes were designed to (i) probe a role for potential proton donors (Tyr-72 and Tyr-356) in the oxidative half-reaction of MR; (ii) assess the function of a highly conserved tryptophan residue (Trp-106) in catalysis; (iii) investigate the role of Thr-32 in modulating the FMN reduction potential and catalysis. The Y72F and Y356F enzymes retained activity in both steady-state and stopped-flow kinetic studies, indicating they do not serve as key proton donors in the oxidative reaction of MR. Taken together with our recently published data (Messiha, H. L., Munro, A. W., Bruce, N. C., Barsukov, I., and Scrutton, N. S. (2005) J. Biol. Chem. 280, 4627-4631) that rule out roles for Cys-191 (corresponding with the proton donor, Tyr-196, in the structurally related OYE1 enzyme) and His-186 as proton donors, we infer solvent is the source of the proton in the oxidative half-reaction of MR. We demonstrate a key role for Thr-32 in modulating the reduction potential of the FMN, which is decreased approximately 50 mV in the T32A mutant MR. This effects a change in rate-limiting step in the catalytic cycle of the T32A enzyme with the oxidizing substrate 2-cyclohexenone. Despite the conservation of Trp-106 throughout the OYE family, we show this residue does not play a major role in catalysis, although affects on substrate and coenzyme binding are observed in a W106F enzyme. Our studies show some similarities, but also major differences, in the catalytic mechanism of MR and OYE1, and emphasize the need for caution in inferring mechanism by structural comparison of highly related enzymes in the absence of solution studies.  相似文献   

3.
E Jablonski  M DeLuca 《Biochemistry》1978,17(4):672-678
Highly purified NADH and NADPH:FMN oxidoreductases from Beneckea harveyi have been characterized with regard to kinetic parameters, association with luciferase, activity with artificial electron acceptors, and the effects of inhibitors. The NADH:FMN oxidoreductase exhibits single displacement kinetics while the NADPH:FMN oxidoreductase exhibits double displacement or ping-pong kinetics. This is consistent with the formation of a reduced enzyme as an intermediate in the reaction of catalyzed by the NADPH:FMN oxidoreductase. Coupling of either of the oxidoreductases to the luciferase reaction decreases the apparent Kms for NADH, NADPH, and FMN, supporting the suggestion of a complex between the oxidoreductases and luciferase. The soluble oxidoreductases are more efficient in producing light with luciferase than is a NADH dehydrogenase preparation obtained from the membranes of these bacteria. The soluble enzymes use either FMN or FAD as substrates for the oxidation of reduced pyridine nucleotides while the membrane NADH dehydrogenase is much more active with artificial electron acceptors such as ferricyanide and methylene blue. FMN and FAD are very poor acceptors. The evidence indicates that neither of the soluble oxidoreductases is derived from the membranes. Both enzymes are constitutive and do not depend on the synthesis of luciferase.  相似文献   

4.
Limited proteolysis of brewer's yeast old yellow enzyme (OYE) was carried out with bovine pancreatic alpha-chymotrypsin. The reaction proceeded with a decrease of the NADPH oxidase activity, generating specifically two peptides (designated as 34K and 14K fragments) with apparent molecular weights of 34,000 and 14,000, respectively. The same proteolytic treatment of apo OYE resulted in rapid and complete digestion of the protein. The 34K and 14K fragments are so intimately associated with each other that the isolation of each peptide from the other in the native form was unsuccessful. However, the complex of the two fragments was separated from the intact OYE and termed "nicked OYE." Nicked OYE still retained FMN and showed a visible-absorption spectrum slightly modified from that of intact OYE. Nicked OYE showed decreased affinity toward rho-bromophenol as compared to intact OYE. Nicked OYE exhibited lower Km and Vmax values than intact OYE in the NADPH oxidase reaction. The 34K and 14K fragments could be separated from each other by reversed-phase HPLC under denaturing conditions and the amino acid sequences of the two fragments and intact OYE in the amino terminal regions were determined. The N-terminal sequence of the 34K fragment coincided with that of intact OYE, indicating that the 34K fragment lies in the N-terminal side of OYE. The N-terminal sequence of the 14K fragment was found to show homology with the site of flavodoxin where it forms an electron-transfer complex with cytochrome c. The characteristic feature of this region is the presence of acidic residues and is shared by the FMN domain of NADPH-cytochrome P-450 reductase. We interpret these findings as indicating that OYE has a physiological role as an electron transfer component.  相似文献   

5.
Bacteria capable of metabolizing highly explosive and vasodilatory glycerol trinitrate (GTN) were isolated under aerobic and nitrogen-limiting conditions from soil, river water, and activated sewage sludge. One of these strains (from sewage sludge) chosen for further study was identified as Agrobacterium radiobacter subgroup B. A combination of high-pressure liquid chromatography and nuclear magnetic resonance analyses of the culture medium during the growth of A. radiobacter on basal salts-glycerol-GTN medium showed the sequential conversion of GTN to glycerol dinitrates and glycerol mononitrates. Isomeric glycerol 1,2-dinitrate and glycerol 1,3-dinitrate were produced simultaneously and concomitantly with the disappearance of GTN, with significant regioselectivity for the production of the 1,3-dinitrate. Dinitrates were further degraded to glycerol 1- and 2-mononitrates, but mononitrates were not biodegraded. Cells were also capable of metabolizing pentaerythritol tetranitrate, probably to its trinitrate and dinitrate analogs. Extracts of broth-grown cells contained an enzyme which in the presence of added NADH converted GTN stoichiometrically to nitrite and the mixture of glycerol dinitrates. The specific activity of this enzyme was increased 160-fold by growth on GTN as the sole source of nitrogen.  相似文献   

6.
The crystal structure of the NADH-dependent bacterial flavoenzyme morphinone reductase (MR) has been determined at 2.2-A resolution in complex with the oxidizing substrate codeinone. The structure reveals a dimeric enzyme comprising two 8-fold beta/alpha barrel domains, each bound to FMN, and a subunit folding topology and mode of flavin-binding similar to that found in Old Yellow Enzyme (OYE) and pentaerythritol tetranitrate (PETN) reductase. The subunit interface of MR is formed by interactions from an N-terminal beta strand and helices 2 and 8 of the barrel domain and is different to that seen in OYE. The active site structures of MR, OYE, and PETN reductase are highly conserved reflecting the ability of these enzymes to catalyze "generic" reactions such as the reduction of 2-cyclohexenone. A region of polypeptide presumed to define the reducing coenzyme specificity is identified by comparison of the MR structure (NADH-dependent) with that of PETN reductase (NADPH-dependent). The active site acid identified in OYE (Tyr-196) and conserved in PETN reductase (Tyr-186) is replaced by Cys-191 in MR. Mutagenesis studies have established that Cys-191 does not act as a crucial acid in the mechanism of reduction of the olefinic bond found in 2-cyclohexenone and codeinone.  相似文献   

7.
Wang H  Lei B  Tu SC 《Biochemistry》2000,39(26):7813-7819
Luminous bacteria contain three types of NAD(P)H-FMN oxidoreductases (flavin reductases) with different pyridine nucleotide specificities. Among them, the NADPH-specific flavin reductase from Vibrio harveyi exhibits a uniquely high preference for NADPH. In comparing the substrate specificity, crystal structure, and primary sequence of this flavin reductase with other structurally related proteins, we hypothesize that the conserved Arg203 residue of this reductase is critical to the specific recognition of NADPH. The mutation of this residue to an alanine resulted in only small changes in the binding and reduction potential of the FMN cofactor, the K(m) for the FMN substrate, and the k(cat). In contrast, the K(m) for NADPH was increased 36-fold by such a mutation. The characteristic perturbation of the FMN cofactor absorption spectrum upon NADP(+) binding by the wild-type reductase was abolished by the same mutation. While the k(cat)/K(m,NADPH) was reduced from 1990 x 10(5) to 46 x 10(5) M(-1) min(-1) by the mutation, the mutated variant showed a k(cat)/K(m,NADH) of 4 x 10(5) M(-1) min(-1), closely resembling that of the wild-type reductase. The deuterium isotope effects (D)V and (D)(V/K) for (4R)-[4-(2)H]-NADPH were 1.7 and 1.4, respectively, for the wild-type reductase but were increased to 3.8 and 4.0, respectively, for the mutated variant. Such a finding indicates that the rates of NADPH and NADP(+) dissociation in relation to the isotope-sensitive redox steps were both increased as a result of the mutation. These results all provide support to the critical role of the Arg203 in the specific recognition and binding of NADPH.  相似文献   

8.
The 31P- and 13C-NMR spectra of old yellow enzyme (OYE) were measured. The 31P-NMR signal of FMN bound to apo OYE-I, one of the pure forms of OYE, was observed at a substantially lower field compared to that of free FMN. While the 31P-signal of free FMN is pH-titratable with a pK value of about 6.5, which corresponds to the monoanion-dianion transition of the phosphate group, the 31P-signal of FMN bound to OYE-I shows no pH-dependence at pH 5-9, indicating that the phosphate group of FMN bound to OYE-I is fixed in the dianionic form in the pH region of 5-9. Apo OYE(0), i.e., the OYE preparation obtained by the conventional method, was reconstituted with [2-13C]FMN or [4,10a-13C2]FMN, while apo OYE-I was reconstituted with [4a-13C]FMN. The 13C-NMR spectra of these reconstituted OYE species were measured in the absence and presence of phenolic compounds which form complexes with OYE. Each 13C-signal of the 13C-labeled FMN became broader in the bound state compared to the free state, indicating restriction of flavin mobility in the bound form. Complex formation of the reconstituted OYE species with p-bromophenol did not shift the 10a-13C signal but shifted the 2- and 4-13C signals slightly upfield, whereas the 4a-13C signal was shifted significantly upfield in the complexed form. This complex-induced upfield shift of the 4a-13C signal was measured with various p-substituted phenols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Vanillyl-alcohol oxidase (VAO) is member of a newly recognized flavoprotein family of structurally related oxidoreductases. The enzyme contains a covalently linked FAD cofactor. To study the mechanism of flavinylation we have created a design point mutation (His-61 --> Thr). In the mutant enzyme the covalent His-C8alpha-flavin linkage is not formed, while the enzyme is still able to bind FAD and perform catalysis. The H61T mutant displays a similar affinity for FAD and ADP (K(d) = 1.8 and 2.1 microm, respectively) but does not interact with FMN. H61T is about 10-fold less active with 4-(methoxymethyl)phenol) (k(cat) = 0.24 s(-)(1), K(m) = 40 microm) than the wild-type enzyme. The crystal structures of both the holo and apo form of H61T are highly similar to the structure of wild-type VAO, indicating that binding of FAD to the apoprotein does not require major structural rearrangements. These results show that covalent flavinylation is an autocatalytical process in which His-61 plays a crucial role by activating His-422. Furthermore, our studies clearly demonstrate that in VAO, the FAD binds via a typical lock-and-key approach to a preorganized binding site.  相似文献   

10.
Various flavin analogs were used as alternate substrates or competitive inhibitors to characterize the FMN binding sites of the NADH- and NADPH-specific FMN oxidoreductases from Beneckea harveyi. Several polyhydroxyl compounds were found to be poor competitive inhibitors for the FMN sites of these enzymes. The FMN binding sites of the two enzymes were found to be quite similar. The NADH:FMN oxidoreductase binds FMN exclusively through the isoalloxazine ring. The methyl groups at positions 7 and 8 contribute significantly to this binding. Utilizing lumichrome as a competitive inhibitor of the FMN binding site and AMP as a competitive inhibitor of the NADH binding site, we were able to determine that the NADH:FMN oxidoreductase forms an active ternary complex with NADH binding first in an ordered mechanism. The NADPH oxidoreductase also binds FMN primarily through the isoalloxazine ring. Unlike their participation in reaction with the NADH-specfic enzyme, the methyl groups at positions 7 and 8 are not involved in binding. There was no significant binding of the ribityl phosphate moiety with either enzyme. Both enzymes have lower Km values for lumiflavin than FMN.  相似文献   

11.
M Witschel  S Nagel    T Egli 《Journal of bacteriology》1997,179(22):6937-6943
In a gram-negative isolate (DSM 9103) able to grow with EDTA as the sole source of carbon, nitrogen, and energy, the first two steps of the catabolic pathway for EDTA were elucidated. They consisted of the sequential oxidative removal of two acetyl groups, resulting in the formation of glyoxylate. An enzyme complex that catalyzes the removal of two acetyl groups was purified and characterized. In the reaction, ethylenediaminetriacetate (ED3A) was formed as an intermediate and N,N'-ethylenediaminediacetate was the end product. The enzyme complex consisted of two components: component A' (cA'), most likely a monooxygenase, which catalyzes the cleavage of EDTA and ED3A while consuming oxygen and reduced flavin mononucleotide (FMN)-H2, and component B' (cB'), an NADH2:FMN oxidoreductase that provides FMNH2 for cA'. cB' could be replaced by other NADH2:FMN oxidoreductases such as component B of the nitrilotriacetate monooxygenase or the NADH2:FMN oxidoreductase from Photobacterium fischeri. The EDTA-oxidizing enzyme complex accepted EDTA as a substrate only when it was complexed with Mg2+, Zn2+, Mn2+, Co2+, or Cu2+. Moreover, the enzyme complex catalyzed the removal of acetyl groups from several other aminopolycarboxylic acids that possess three or more acetyl groups.  相似文献   

12.
Porcine NADH-cytochrome b5 reductase catalytic domain (Pb5R) has the RXY(T/S)+(T/S) flavin-binding motif that is highly conserved among the structurally related family of flavoprotein reductases. Mutations were introduced that alter the Arg(63), Tyr(65), and Ser(99) residues within this motif. The mutation of Tyr(65) to either alanine or phenylalanine destabilized the protein, produced an accelerated release of FAD in the presence of 1.5 M guanidine hydrochloride, and decreased the k(cat) values of the enzyme. These results indicate that Tyr(65) contributes to the stability of the protein and is important in the electron transfer from NADH to FAD. The mutation of Ser(99) to either alanine or valine, and of Arg(63) to either alanine or glutamine increased both the K(m) values for NADH (K(m)(NADH)) and the dissociation constant for NAD(+) (K(d)(NAD+)). However, the mutation of Ser(99) to threonine and of Arg(63) to lysine had very little effect on the K(m)(NADH) and K(d)(NAD+) values, and resulted in small changes in the absorption and circular dichroism spectra. These results suggest that the hydroxyl group of Ser(99) and the positive charge of Arg(63) contribute to the maintenance of the properties of FAD and to the effective binding of Pb5R to both NADH and NAD(+). In addition, the mutation of Arg(63) to either alanine or glutamine increased the apparent K(m) values for porcine cytochrome b5 (Pb5), while changing Arg(63) to lysine did not. The positive charge of Arg(63) may regulate the electron transfer through the electrostatic interaction with Pb5. These results substantiate the important role of the flavin-binding motif in Pb5R.  相似文献   

13.
The brewer's yeast old yellow enzyme (OYE) was reconstituted with 8-fluoro-8-demethyl FMN (8F-FMN). The reconstituted enzyme exhibited absorption maxima at 355 and 450 nm in the visible region. This reconstituted enzyme underwent no further spectral changes, showing no evidence of modification in the flavin moiety. However, when the reconstituted enzyme was subjected to specific limited proteolysis with bovine alpha-chymotrypsin, gradual spectral changes were observed with disappearance of the 355- and 450-nm bands accompanied by the appearance of a new band at 496 nm. Identical spectral changes were observed when the proteolytically cleaved OYE (nicked OYE) was reconstituted with 8F-FMN. The process associated with these spectral changes was found to be unimolecular by kinetic analysis. Reverse-phase HPLC analysis revealed that these spectral changes resulted from covalent bond formation between 8F-FMN and the protein moiety after the proteolytic cleavage of the protein into 14K and 34K fragments. The reverse-phase HPLC monitored at 490 nm showed that the chromophore with 496 nm absorption maximum was covalently attached to the 14K fragment. The amino acid sequence analysis of the flavinylated 14K fragment together with that of the 14K fragment of native OYE indicated that the N-terminal leucine of the 14K fragment is the site of flavinylation. These findings imply that the amino group of the N-terminal leucine of the 14K fragment became available as the result of proteolysis and that this amino group nucleophilically attacked the 8-position of 8F-FMN, forming a covalent bond between the flavin moiety and the 14K fragment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
M J Paine  S Ayivor  A Munro  P Tsan  L Y Lian  G C Roberts  C R Wolf 《Biochemistry》2001,40(45):13439-13447
NADPH-cytochrome P450 oxidoreductase (P450 reductase, EC 1.6.2.4) is an essential component of the P450 monooxygenase complex and binds FMN, FAD, and NADPH cofactors. Residues Tyr140 and Tyr178 are known to be involved in FMN binding. A third aromatic side chain, Phe181, is also located in the proximity of the FMN ring and is highly conserved in FMN-binding proteins, suggesting an important functional role. This role has been investigated by site-directed mutagenesis. Substitution of Phe181 with leucine or glutamine decreased the cytochrome c reductase activity of the enzyme by approximately 50%. Ferricyanide reductase activity was unaffected, indicating that the FAD domain was unperturbed. The mutant FMN domains were expressed in Escherichia coli, and the redox potentials and binding energies of their complexes with FMN were determined. The affinity for FMN was decreased approximately 50-fold in the Leu181 and Gln181 mutants. Comparison of the binding energies of the wild-type and mutant enzymes in the three redox states of FMN suggests that Phe181 stabilizes the FMN-apoprotein complex. The amide 1H and 15N resonances of the Phe181Leu FMN domain were assigned; comparison of their chemical shifts with those of the wild-type domain indicated that the effect of the substitution on FMN affinity results from perturbation of two loops which form part of the FMN binding site. The results indicate that Phe181 cooperates with Tyr140 and Tyr178 to play a major role in the binding and stability of FMN.  相似文献   

15.
Old yellow enzyme (OYE) is an NADPH oxidoreductase capable of reducing a variety of compounds. It contains flavin mononucleotide (FMN) as a prosthetic group. A ternary complex structure of OYE from Trypanosoma cruzi (TcOYE) with FMN and one of the substrates, p-hydroxybenzaldehyde, shows a striking movement around the active site upon binding of the substrate. From a structural comparison of other OYE complexed with 12-oxophytodienoate, we have constructed a complex structure with another substrate, prostaglandin H(2) (PGH(2)), to provide a proposed stereoselective reaction mechanism for the reduction of PGH(2) to prostaglandin F(2α) by TcOYE.  相似文献   

16.
Heterogeneity of brewer's yeast old yellow enzyme (OYE) was found by anion-exchange high-performance liquid chromatography (HPLC) as well as by 13C-NMR spectroscopy of [4a-13C]FMN reconstituted into apo OYE. Though the OYE sample prepared according to the conventional procedure gave a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the OYE sample was found to consist of five species on anion-exchange HPLC. The 13C-NMR spectrum of the [4a-13C]FMN-reconstituted OYE gave multiple peaks corresponding to 4a-13C. This multiplicity indicates that this OYE preparation possesses heterogeneity in the environment surrounding FMN, i.e., the active site of OYE. The different species of OYE were separately obtained by preparative HPLC on an anion-exchange column. These species as well as the unresolved sample showed identical mobility on SDS-PAGE and similar but slightly different NADPH oxidase activities. This heterogeneity was shown not to have resulted from proteolytic modification during the conventional purification procedure, which includes autolysis of the yeast cells, since the enzyme extracted by mechanical destruction of the yeast cells in the presence of various protease inhibitors exhibited identical heterogeneity. The pure OYE forms obtained by preparative anion-exchange HPLC are homogeneous in the flavin environment as revealed by a single 13C-NMR signal for the [4a-13C]FMN-reconstituted species.  相似文献   

17.
Bacteria readily transform 2,4,6-trinitrotoluene (TNT), a contaminant frequently found at military bases and munitions production facilities, by reduction of the nitro group substituents. In this work, the kinetics of nitroreduction were investigated by using a model nitroreductase, NAD(P)H:flavin mononucleotide (FMN) oxidoreductase. Under mediation by NAD(P)H:FMN oxidoreductase, TNT rapidly reacted with NADH to form 2-hydroxylamino-4,6-dinitrotoluene and 4-hydroxylamino-2,6-dinitrotoluene, whereas 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not produced. Progressive loss of activity was observed during TNT reduction, indicating inactivation of the enzyme during transformation. It is likely that a nitrosodinitrotoluene intermediate reacted with the NAD(P)H:FMN oxidoreductase, leading to enzyme inactivation. A half-maximum constant with respect to NADH, K(N), of 394 microM was measured, indicating possible NADH limitation under typical cellular conditions. A mathematical model that describes the inactivation process and NADH limitation provided a good fit to TNT reduction profiles. This work represents the first step in developing a comprehensive enzyme level understanding of nitroarene biotransformation.  相似文献   

18.
Diaphorase was studied as a possible oxidoreductase participating in NO production from some vasorelaxants. In the presence of NADH or NADPH, diaphorase can convert selected NO donors, glycerol trinitrate (GTN) and formaldoxime (FAL) to nitrites and nitrates with NO as an intermediate. This activity of diaphorase was inhibited by diphenyleneiodonium (DPI) (inhibitor of some NADPH-dependent flavoprotein oxidoreductases), while it remained uninhibited by NG-nitro-L-arginine methyl ester (inhibitor of NO synthase) 7-Ethoxyresorufin (inhibitor of cytochrome P-450 1A1 and cytochrome P-450 NADPH-dependent reductase) inhibited the conversion of GTN only. Existence of NO as an intermediate of the reaction was supported by results of electron paramagnetic resonance spectroscopy. In addition to its ability to affect the above mentioned NO donors, diaphorase was able to reduce 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) and thus to eliminate its NO scavenging effect. This activity of diaphorase could also be inhibited by DPI. The reaction of diaphorase with GTN and PTIO was not affected by superoxide dismutase (SOD) or catalase. Reaction of FAL with diaphorase was lowered with SOD by 38 % indicating the partial participation of superoxide anion probably generated by the reaction of diaphorase with NADH or NADPH. Catalase had no effect. Diaphorase could apparently be one of the enzymes participating in the metabolism of studied NO donors to NO. The easy reduction and consequent elimination of PTIO by diaphorase could affect its use as an NO scavenger in biological tissues.  相似文献   

19.
Hopkins N  Stanley RJ 《Biochemistry》2003,42(4):991-999
Low-temperature absorption and Stark spectroscopy have been used to study the electronic properties of oxidized flavin mononucleotide (FMN) in old yellow enzyme (OYE) and OYE complexed with p-chlorophenol (p-Cl phenol). The low-temperature absorbance spectrum of OYE showed splittings of the blue and near-UV vibronic bands, which appears to be due to hydrogen bonding between the isoalloxazine moiety and the protein. A Stark spectroscopic analysis showed that the electronic structure of the FMN cofactor in OYE is not significantly perturbed relative to flavins in simple solvents. However, the charge-transfer band in the OYE:p-Cl phenol complex showed a large Stark effect indicative of substantial charge displacement. The magnitude and direction of this charge displacement are consistent with significant charge transfer along the charge-transfer transition dipole moment direction. In addition, the Stark spectrum of the CT band showed unexpected fine structure that could correlate with vibrational progressions in either the p-Cl phenol donor or the flavin acceptor.  相似文献   

20.
WrbA (tryptophan [W] repressor-binding protein) was discovered in Escherichia coli, where it was proposed to play a role in regulation of the tryptophan operon; however, this has been put in question, leaving the function unknown. Here we report a phylogenetic analysis of 30 sequences which indicated that WrbA is the prototype of a distinct family of flavoproteins which exists in a diversity of cell types across all three domains of life and includes documented NAD(P)H:quinone oxidoreductases (NQOs) from the Fungi and Viridiplantae kingdoms. Biochemical characterization of the prototypic WrbA protein from E. coli and WrbA from Archaeoglobus fulgidus, a hyperthermophilic species from the Archaea domain, shows that these enzymes have NQO activity, suggesting that this activity is a defining characteristic of the WrbA family that we designate a new type of NQO (type IV). For E. coli WrbA, the K(m)(NADH) was 14 +/- 0.43 microM and the K(m)(benzoquinone) was 5.8 +/- 0.12 microM. For A. fulgidus WrbA, the K(m)(NADH) was 19 +/- 1.7 microM and the K(m)(benzoquinone) was 37 +/- 3.6 microM. Both enzymes were found to be homodimeric by gel filtration chromatography and homotetrameric by dynamic light scattering and to contain one flavin mononucleotide molecule per monomer. The NQO activity of each enzyme is retained over a broad pH range, and apparent initial velocities indicate that maximal activities are comparable to the optimum growth temperature for the respective organisms. The results are discussed and implicate WrbA in the two-electron reduction of quinones, protecting against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号