共查询到20条相似文献,搜索用时 78 毫秒
1.
Structural and functional changes in wheat root cells during long-term action of a protonophore--carbonyl cyanide 3-chlorophenylhydrazone (CCCP)--were studied. It was demonstrated that CCCP affected the electrical potential and inward resistance of cells, increased K+ ions release to the incubation medium, inhibits oxygen uptake for 1-4 h, which was followed by oxygen uptake stimulation for 6 h of treatment. These changes of physiological processes were accompanied with a variety of ultrastructural changes in cell organization, namely in the structure of mitochondria, endoplasmic reticulum canals, and the nucleus. The role of protons is discussed, in particular, in the regulation of metabolic state of mitochondria, and in general regulation of structural and functional conditions of cells. 相似文献
2.
The dynamics of root growth, proliferation of initial cells of the root cap, rhizodermis, and central metaxylem, as well as structural changes in the cells induced by a 72-h exposure to a high (0.1 mM) concentration of NiSO4 were studied in 3-day-old wheat (Triticum aestivum L.) seedlings. In the roots of control plants, we observed a 12-h rhythm of changes in the length of the cells that completed elongating. Upon the treatment with nickel, this effect was negated, and a considerable reduction in the root length increment was observed in 12 h. In 24 h, root growth essentially ceased. Cell elongation was suppressed acropetally, and the cells, whose elongation was over, became shorter. In the meristem and apical part of the elongation zone, slow cell growth continued during the second and even third days. Autoradiography showed that the earliest effect of nickel on the processes of root morphogenesis observed in 6 h was a suppression of cell transition to DNA synthesis. The cells, where DNA synthesis has already started or which were in other stages of the cycle, continued to pass slowly through the cycle and completed it. Sister cells formed as a result of division subsequently left the cycle in the phase G1 and transited to dormancy. It was found that the main mechanism of cell proliferation cessation was the suppression of cell transition to DNA synthesis. In the cells elongating when exposed to nickel, tissue-specific changes in the nucleus structure were observed (chromatolysis in the rhizodermis and cortex, pycnosis in the endodermis, a disturbance of the nucleus structure in the central metaxylem). These disorders were only observed after cessation of elongation. Root incubation in 0.1 mM nickel solution did not affect the onset of cell differentiation in the xylem and metaphloem and shifted its beginning to the root tip. However, in 24 h the initiation and growth of root hairs were suppressed. It was concluded that tissue-specific nickel-induced changes in the nucleus structure in the elongating cells do not cause the cessation of root growth, although point to nickel toxic effect on the cells in the course of elongation. 相似文献
3.
N. P. Demchenko I. B. Kalimova K. N. Demchenko 《Russian Journal of Plant Physiology》2010,57(3):438-447
DNA synthesis and cell divisions in the quiescent center as well as initiation of lateral root primordia were investigated
in the course of incubation of the roots of 3-day-old wheat (Triticum aestivum L.) seedlings on the medium with 0.1 mM NiSO4 for 72 h. It was found that the earliest effect of nickel on proliferation of the quiescent center cells was associated with
an increase in the mitotic index 6 h after the beginning of its action. This effect was assumed to depend on an increase in
mitosis time. Twelve hours after the beginning of the effect of nickel, mitotic index became somewhat lower, and in 18 h it
sharply decreased. Some dividing cells were observed among the initial cells of certain tissues and near the quiescent center
even in 72 h. The portion of DNA synthesizing cell sharply decreased in 12 h, and in 48 h such cells were lacking. The main
mechanism governing the termination of cell proliferation in the quiescent center as well as in the meristem and calyptrogen
of the cap is the inhibition of cell transition to DNA synthesis. The cells that had time to start DNA synthesis or already
finished it and were in other phases of the cycle continued a slow progression through the cycle and completed it. Sister
cells, produced as a result of divisions, left the mitotic cycle in the phase G1 and transited to dormancy. Nickel did not inhibit initiation and development of lateral root primordia. Resumption of DNA
synthesis and cell divisions occurred not only in the pericycle and endodermis participating in the initiation of lateral
root primordia but also in the cortex cells in the vicinity of developing primordia. In 18 h after the beginning of the experiment
when the rate of the root growth considerably decreased, the region, where primordia were initiated, was located closer to
the root tip. Subsequently, when elongation of the cells was inhibited, this region moved closer to the tip until structural
disturbances occurred in the nuclei of the endodermal cells located near the root tip and elongated under the effect of nickel.
The results concerning the effect of nickel and other heavy metals on root cell proliferation obtained by other researchers
and the role of pericycle organization in the translocation and accumulation of nickel in the tissues are discussed. 相似文献
4.
Changes in superoxide radical formation and bioelectrical characteristics of excised wheat root cells under modification of plasma membrane ion permeability were studied. It was shown that a 2 h treatment of excised roots with valinomycin (Val, 20 microM), N, N'-dicyclohexylcarbodimide (DCCD, 100 microM), gramicidin S (Gr, 20 microM), chlorpromazine (CPZ, 100 microM) caused an increased loss of potassium by cells, lowering of membrane potential (MP) and electrical input resistance (Rin) of the cells. The superoxide formation by excised root cells diminished (under DCCD) or remained at the control level (under Val), which was accompanied by a minor decrease of MP and Rin of the cells, a small increase in potassium loss by excised roots, and in no change of pH of incubation medium. Significant depolarization of plasma membrane, dropping of Rin and essential loss of potassium ions by the cells correlated with a rise in the medium alkalinization and superoxide formation by excised roots (in the presence of Gr, CPZ). Ion channel blocker gadolinium (Gd3+, 200 microM) caused an increase of MP and Rin reduction of potassium loss by cells, and a decrease of pH of the incubation medium, and also enhancement of superoxide formation by excised root cells. It is suggested that upon plasma membrane ion permeability modification the activity of superoxide generating systems depends on the specificity and mechanisms of action of modulators, and is determined by their influence on redox state of plasma membrane as well as by peculiarities of ion transport disturbance. 相似文献
5.
A QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure 总被引:1,自引:0,他引:1
Zhien Pu Ying Pei Jian Yang Jian Ma Wei Li Dengcai Liu Jirui Wang Yuming Wei Youliang Zheng 《Plant and Soil》2018,425(1-2):287-296
Background and aims
As an essential mineral element, selenium (Se) plays a critical role in human health. Given the low concentrations (<100 mg Se kg–1) of Se in staple crops, the identification of genetic resources with enriched Se, as well as the genes controlling Se concentration, is valuable for the marker-assisted selection of Se-rich varieties.Methods
We determined the chromosomal quantitative trait (QTL) for Se concentration over two consecutive plant growth cycles using recombinant inbred lines (RILs) treated with two different concentrations of Se under both field-grown and hydroponic conditions.Results
Several QTL for Se concentration were detected across the different treatments. Significant genotypic variation in the tissues of the RIL was found at Se-deficicencycondition. Notably, a QTL located on 3D (interval 214.00–218.00, Qse.sau-3D) affected root length and Se concentration in the leaves and grains, suggesting the existence of the same allele with distinctly different functions. However, the QTL for the agronomic traits measured (plant height, flowering time, and tillering number) and Se concentration were not found to be located on the same chromosomal regions, suggesting that marker-assisted selection for both traits is feasible. Se concentrations in the grains were primarily determined by the mineral transport efficiency of the lines, and the line with the highest Se concentration in the grains always possessed larger, more fibrous root systems. The concentrations of Se in the plant tissues were in the order of: root > stem > grain.Conclusions
This is the first study to document a Se-rich synthetic wheat line, and root structure and Se grain concentration was strongly affected by QTL located on 3D.6.
Asbun J Manso AM Villarreal FJ 《American journal of physiology. Heart and circulatory physiology》2005,288(1):H227-H234
Long-standing diabetes can result in the development of cardiomyopathy, which can be accompanied by myocardial fibrosis. Although exposure of cultured kidney and skin fibroblasts to high glucose (HG) concentration is known to increase collagen synthesis, little is known about cardiac fibroblasts (CFs). Therefore, we determined the influence of HG conditions on CF functions and the effects of losartan and vitamin E in these responses. We cultured rat CFs in either normal glucose (NG; 5.5 mM) or HG (25 mM) media and assessed changes in protein and collagen synthesis, matrix metalloproteinase (MMP) activity, and levels of mRNA for ANG II type 1 (AT(1)) receptors. Results indicate that HG-level CFs synthesized more protein and collagen, and these effects were not due to changes in osmotic pressure. The addition of ANG II stimulated protein and collagen synthesis in NG-concentration but not HG-concentration CFs. Interestingly, losartan pretreatment blocked the HG- or ANG II-induced increases in both protein and collagen synthesis. HG or ANG II decreased total MMP activity. Decreases in MMP activity were blocked by losartan. AT(1) mRNA levels were upregulated with HG concentration. Vitamin E pretreatment blocked the effects of HG on total protein synthesis and stimulated MMP activity. Results suggest that HG levels may promote fibrosis by increasing CF protein and collagen synthesis and decreasing MMP activity. HG levels may cause these effects via the upregulation of AT(1) receptors, which can be blocked by losartan. However, vitamin E can alter HG concentration-induced changes in CF functions independently of AT(1) mRNA levels. 相似文献
7.
Summary The rate of translocation of 14C assimilates from leaves to seminal roots in wheat seedlings was considerably reduced by lowering root temperature from 20° to 10° or 5° although the total translocation of 14C to the roots after 24 h was little affected by temperature. The lowered root temperatures (particularly 5°) resulted in a more uniform distribution of assimilate along the roots than did a temperature of 20°, the ratios of radioactivity/cm in the apical cm, elongating zone, and basal parts of the root after 24 h being 14.0:9.6:1 in 20° roots by contrast with 2.8:1:1 in 5° roots. Temperature effects on assimilate distribution may help explain the observations that for roots grown below 15° ion uptake is sustained in older parts and that roots grown at a low temperature are thicker than roots grown at a higher one. 相似文献
8.
Panther E Idzko M Corinti S Ferrari D Herouy Y Mockenhaupt M Dichmann S Gebicke-Haerter P Di Virgilio F Girolomoni G Norgauer J 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(8):4129-4135
Lysophosphatidic acid (LPA) is a bioactive lipid mediator which is generated by secretory phospholipase A(2). In this study, we studied the biological activity of LPA on human dendritic cells (DCs), which are specialized APCs characterized by their ability to migrate into target sites and secondary lymphoid organs to process Ags and activate naive T cells. We show that immature and mature DCs express the mRNA for different LPA receptors such as endothelial differentiation gene (EDG)-2, EDG-4, and EDG-7. In immature DCs, LPA stimulated pertussis toxin-sensitive Ca(2+) increase, actin polymerization, and chemotaxis. During the maturation process, DCs lost their ability to respond toward LPA with Ca(2+) transients, actin polymerization, and chemotaxis. However, LPA inhibited in a pertussis toxin-insensitive manner the secretion of IL-12 and TNFalpha as well as enhanced secretion of IL-10 from mature DCs. Moreover, LPA did not affect the endocytic or phagocytic capacities and the surface phenotype of DCs, although it increased the allostimulatory function of mature DC and inhibited their capacity to induce Th1 differentiation. In summary, our study implicates that LPA might regulate the trafficking, cytokine production, and T cell-activating functions of DCs. 相似文献
9.
10.
Potassium influx into maize root systems : influence of root potassium concentration and ambient ammonium 总被引:4,自引:1,他引:4 下载免费PDF全文
Potassium influx into roots of dark-grown decapitated maize seedling (Zea mays L., cv Pioneer 3369A) was examined in presence and absence of ambient ammonium and at various root potassium concentrations. Six-day old seedlings which were dependent on the endosperm reserves for their energy source were exposed to KCl (labeled with 86Rb) ranging from 5 to 200 micromolar. At both low (13 micromoles per gram fresh weight) and high (100 micromoles per gram fresh weight) root potassium concentration, isotherms indicated two potassium influx systems, one approaching saturation at 50 to 100 micromolar potassium and an additional one tentatively considered to be linear. A mixed-type inhibition by ammonium for the low-concentration saturable system was indicated by a concomitant decrease in Vmax and increase in Km. High root potassium concentration decreased Vmax but had little effect on Km of this system. The rate constant for the second quasilinear system was decreased by ambient ammonium and by high root potassium status. Transfer of high potassium roots to potassium-free solutions resulted in an increase in influx within 2 hours; by 24 hours influx significantly exceeded that of roots not previously exposed to potassium. In roots of both low and high root potassium concentrations, potassium influx was restricted progressively as ambient ammonium increased to about 100 micromolar, but there was little further inhibition as ammonium concentrations increased beyond that to 500 micromolar. The data imply that potassium influx has two components, one subject to inhibition by ambient ammonium and one relatively resistant. 相似文献
11.
Filek M Zembala M Szechyńska-Hebda M 《Zeitschrift für Naturforschung. C, Journal of biosciences》2002,57(7-8):696-704
The zeta potential measurements of protoplasts obtained from winter wheat cell culture and phospholipid liposomes were performed to determine the electrokinetic charge in a medium containing various phytohormones (kinetin, 2,4-D and zearalenone) in absence and in presence of 2 x 10(-5) MCa2+. Calli were induced from immature inflorescences (inf) and embryos (emb) and cultured to obtain non-embryogenic (NE) and embryogenic (E) cell tissues. All investigated phytohormones indicate ability to adsorb to the negatively charged surfaces (latex, L88 - model negative adsorption site) both in water solutions and at the presence of mannitol and buffer (MES). In biological systems (protoplasts and liposomes - prepared from phospholipids of protoplasts) the electrokinetic charges were dependent on the phospholipid and protein composition of cells. The influence of protein groups on electrokinetic charge was calculated from charge values of protoplasts and liposomes, assuming additivity of surface charges. The comparison of calculated charges for protoplasts and liposomes indicate that 2,4-D is better adsorbed to the phospholipid and proteins of NE cells whereas kinetin is bound to the phospholipid and protein sites of E calli. This effect may be connected with embryogenesis process, where non-embryogenic culture of wheat requires 2,4-D in the medium, and embryogenic culture requires cytokinin rather. Zearalenone binding is especially dependent on the kind of explant. 相似文献
12.
Immunohystochemical localization of cytokinins in cells of different root zones of wheat plants showed intensive immunostaining of zeatin in the apical root zone and its subsequent decline with the increase in the distance from the root tip. More intensive labeling of metaxylem and parenchyma cells of the root central cylinder was observed on the sections of the zone where root hairs appeared. Above this zone the decline in immunostaining of the cells of the central cylinder was paralleled by the signs if finalization of differentiation of the xylem vessels shown by lignin deposition. The data of immunohystochemical staining were confirmed by the results of enzyme immunoassay of different cytokinin forms. Likely sources of zeatin accumulation are considered. Possibility of additional (alongside with that in apical root zone) synthesis of cytokinins in the vascular tissues of root and the role of cytokinins in stimulation oflignification are discussed. 相似文献
13.
以黄瓜为受体,以不同化感效应(促进/抑制)小麦品种为供体,采用PCR-DGGE技术,研究了小麦根系分泌物及伴生小麦对黄瓜生长及土壤真菌群落结构的影响.结果表明: 在处理第6天和第12天,化感促进效应小麦根系分泌物分别显著提高了黄瓜幼苗株高和茎粗;在处理第18天,化感促进和抑制效应小麦根系分泌物均显著提高了黄瓜幼苗株高;在处理第6天,不同化感效应小麦根系分泌物均显著降低了黄瓜幼苗根际土壤真菌群落条带数、Shannon指数及均匀度指数,有苗对照(W)显著高于无苗对照(Wn);在处理第18天,各处理的真菌群落结构条带数、Shannon指数及均匀度指数均显著高于无苗对照(Wn).伴生化感抑制效应小麦显著降低了黄瓜根际土壤真菌群落Shannon指数和均匀度指数,说明小麦根系分泌物及伴生小麦改变了土壤真菌群落结构.DGGE图谱及其主成分分析结果表明,伴生不同化感效应小麦对土壤真菌群落结构影响较大. 相似文献
14.
J. Burgess 《Planta》1969,87(3):259-270
Summary A study has been made of prophase in cells of wheat root. An advanced stage in the preparation of the mitotic spindle structure prior to nuclear membrane breakdown is described. The pre-prophase band of microtubules is found to be present in cells containing such cytoplasmic features of late prophase. Also at this time a vesicle-filled area is seen within the nucleus. This area is outside the nuclear membrane but isolated from the cytoplasm by conducting channels. It is proposed that this structure represents a mechanism for the transport of material from the nucleus into the cytoplasm. 相似文献
15.
16.
Three commercial herbicides, at the rates normally recommended for selective weed control in cereal crops, deformed the roots of spring wheat plants grown in sand culture. Affected roots produced large numbers of short swollen lateral branches which later grew on to form tassel-like bundles of side roots. Only the mecoprop and MCPA components of the mixtures were responsible for the deformities; ioxynil and dicamba had no effect. Mecoprop applied to the rooting medium severely deformed the roots but foliar application also resulted in some abnormalities. The effects of the herbicides on root and shoot dry weights were not correlated with their deformative effects. 相似文献
17.
Filek M Biesaga-Kościelniak J Marcińska I Machácková I Krekule J 《Zeitschrift für Naturforschung. C, Journal of biosciences》2004,59(9-10):673-678
The effect of plant growth substances (IAA, 2,4-D, zeatin, kinetin, zearalenone) were studied on membrane properties of the cells of embryogenic (E) and non-embryogenic (NE) calli derived from immature inflorescences (inf) or embryos (emb) of winter wheat. Calli initiated from inflorescences show higher permeability. The ion leakage from cells of E calli was higher than from cells of NE calli. Growth regulators were used in concentrations of 2-30 mg/l (about 10-140 microM). All tested growth substances increased ion leakage from NE emb cells, IAA, zeatin and kinetin being most effective. In NE inf cells the effect of growth substances was similar as in NE emb, but much weaker. In E cells of both types (inf and emb) growth substances decreased ion leakage. Changes in the leakage of potassium and calcium ions were similar to those in total ion leakage. The uptake of labelled auxins (IAA and 2,4-D) was higher in NE cells (especially in NE inf) than in E cells. The endogenous level of IAA was higher in E cells than in NE cells and in inf cells than in emb cells. The importance of auxin in determining permeability of cell membranes is discussed. 相似文献
18.
Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex 总被引:1,自引:0,他引:1
The effects of aluminum on the concentration-dependent kinetics of Ca2+ uptake were studied in two winter wheat (Triticum aestivum L.) cultivars, Al-tolerant Atlas 66 and Al-sensitive Scout 66. Seedlings were grown in 100 M CaCl2 solution (pH 4.5) for 3 d. Subsequently, net Ca2+ fluxes in intact roots were measured using a highly sensitive technique, employing a vibrating Ca2+-selective microelectrode. The kinetics of Ca2+ uptake into cells of the root apex, for external Ca2+ concentrations from 20 to 300 M, were found to be quite similar for both cultivars in the absence of external Al; Ca2+ transport could be described by Michaelis-Menten kinetics. When roots were exposed to solutions containing levels of Al that were toxic to Al-sensitive Scout 66 but not to Atlas 66 (5 to 20 M total Al), a strong correlation was observed between Al toxicity and Al-induced inhibition of Ca2+ absorption by root apices. For Scout 66, exposure to Al immediately and dramatically inhibited Ca2+ uptake over the entire Ca2+ concentration range used for these experiments. Kinetic analyses of the Al-Ca interactions in Scout 66 roots were consistent with competitive inhibition of Ca2+ uptake by Al. For example, exposure of Scout 66 roots to increasing Al levels (from 0 to 10 M) caused the K
m for Ca2+ uptake to increase with each rise in Al concentration, from approx. 100 M in the absence of Al to approx. 300 M in the presence of 10 M Al, while having no effect on the V
max. The same Al exposures had little effect on the kinetics of Ca2+ uptake into roots of Atlas 66. The results of this study indicate that Al disruption of Ca2+ transport at the root apex may play an important role in the mechanisms of Al toxicity in Al-sensitive wheat cultivars, and that differential Al tolerance may be associated with the ability of Ca2+-transport systems in cells of the root apex to resist disruption by potentially toxic levels of Al in the soil solution.We would like to thank Dr. Lionel F. Jaffe, Director of the National Vibrating Probe Facility, Marine Biological Laboratory, Woods Hole, Mass., USA, for making his calcium-selective vibrating-mi-croelectrode system available for a portion of this work. The research presented here was supported in part by USDA/NRI Competitive Grant number 91-37100-6630 to Leon Kochian. Contribution from the USDA-ARS, U.S. Plant, Soil and Nutrition Laboratory, Cornell University, Ithaca, N.Y. This research was part of the program of the Center for Root-Soil Research, Cornell University, Ithaca, N.Y. Department of Soil, Crop and Atmosphere Science, paper No. 1741. 相似文献
19.
A. I. Bozhkov Yu. A. Kuznetsova N. G. Menzyanova 《Russian Journal of Plant Physiology》2009,56(4):480-487
The number of border (scaled off) cells (BCs) was determined in the root apex of 1-day-old wheat (Triticum aestivum L.) seedlings. Microscopic examination of cytological root preparations showed that in 24 h the number of BCs in the gel
sheath of the root apex was 30–40 per root. When the gel sheath was preparatively removed, their number per root increased
twice. It is assumed that the subpopulation of BCs directly associated with the root apex differs from the subpopulation of
BCs freely accommodated in the gel sheath. The number of BCs was the same in the roots with low and high natural growth rates.
NaF (1–20 mM) suppressed growth of wheat seedling roots; the viscosity of the gel sheath increased (by 3–5 times), and the
number of BC rose with the most pronounced increment in the size of the BC subpopulation directly associated with the root
apex.
Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 530–538. 相似文献