首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll-like receptor (TLR) family acts as pattern recognition receptors for pathogen-specific molecular patterns. We previously showed that TLR2 recognizes Gram-positive bacterial components whereas TLR4 recognizes LPS, a component of Gram-negative bacteria. MyD88 is shown to be an adaptor molecule essential for TLR family signaling. To investigate the role of TLR family in host defense against Gram-positive bacteria, we infected TLR2- and MyD88-deficient mice with Staphylococcus aureus. Both TLR2- and MyD88-deficient mice were highly susceptible to S. aureus infection, with more enhanced susceptibility in MyD88-deficient mice. Peritoneal macrophages from MyD88-deficient mice did not produce any detectable levels of cytokines in response to S. aureus. In contrast, TLR2-deficient macrophages produced reduced, but significant, levels of the cytokines, and TLR4-deficient macrophages produced the same amounts as wild-type cells, indicating that S. aureus is recognized not only by TLR2, but also by other TLR family members except for TLR4.  相似文献   

2.
Recent in vitro studies have suggested that CD14, a major receptor for LPS, may also be a receptor for cell wall components of Gram-positive bacteria and thus play a role in Gram-positive shock. To analyze the in vivo role of CD14 in responses to Gram-positive bacteria, CD14-deficient and control mice were injected with Staphylococcus aureus, and the effects on lethality, bacterial clearance, and production of cytokines were analyzed. Survival of CD14-deficient and control mice did not differ significantly after administration of various doses of either unencapsulated or encapsulated S. aureus; furthermore, mice in both groups displayed similar symptoms of shock. In addition, inflammatory cytokines such as TNF-alpha and IL-6 were readily detectable in the serum of CD14-deficient mice injected with live or antibiotic-killed S. aureus. Surprisingly, the serum concentration of TNF-alpha in CD14-deficient mice was at least threefold higher than in control mice after injection of either unencapsulated or encapsulated S. aureus, suggesting that CD14 down-regulates TNF-alpha. A similar increase in serum TNF-alpha occurred when CD14-deficient animals were injected with gentamicin-killed bacteria even though no symptoms of shock were observed. These studies indicate that CD14, in contrast to its key function in responses to the Gram-negative bacterium, Escherichia coli 0111, does not play a prominent role in septic shock induced by S. aureus, and that the symptoms of S. aureus shock are not due solely to TNF-alpha.  相似文献   

3.
Invading bacteria such as Staphylococcus aureus induce mobilization of professional phagocytes (e.g., neutrophils) and extracellular antibacterial proteins (e.g., group IIA phospholipase A2 (gIIA PLA2)). Accumulation of gIIA PLA2 in inflammatory fluids confers potent extracellular antistaphylococcal activity and at lower concentrations promotes bacterial phospholipid degradation during phagocytosis of S. aureus by human neutrophils. D-alanylation of (lipo) teichoic acids of S. aureus increases bacterial resistance to gIIA PLA2 approximately 100-fold, raising the possibility that the resistance of ingested S. aureus to related gV and gX secretory PLA2 present in human neutrophil granules depends on D-alanylation mediated by the dlt operon. However, we show that isogenic wild-type and dltA S. aureus are equally resistant to gV/X PLA2 during phagocytosis and when exposed to the purified enzymes. The fates of wild-type and dltA S. aureus exposed to serum and human neutrophils differed significantly only when extracellular gIIA PLA2 was also present before phagocytosis. The extreme potency of the gIIA PLA2 toward dltA S. aureus suggests that even small amounts of this extracellular enzyme mobilized early in inflammation could contribute substantially to the overall cytotoxicity of acute inflammatory exudates toward S. aureus when D-alanylation of (lipo)teichoic acids is limiting.  相似文献   

4.
Antibacterial properties of secreted phospholipases A2 (PLA2) have emerged gradually. Group (G) IIA PLA2 is the most potent among mammalian secreted (s) PLA2s against Gram-positive bacteria, but additional antibacterial compounds, e.g. the bactericidal/permeability-increasing protein, are needed to kill Gram-negative bacteria. The mechanisms of binding to the bacterial surface and the killing of bacteria by sPLA2s are based on the positive charge of the PLA2 protein and its phospholipolytic enzymatic activity, respectively. The concentration of GIIA PLA2 is highly elevated in serum of patients with bacterial sepsis, and overexpression of GIIA PLA(2) protects transgenic mice against experimental Gram-positive infection. The synthesis and secretion of GIIA PLA2 are stimulated by the cytokines TNF-alpha, IL-1 and IL-6. Secreted PLA2s may be potentially useful new endogenous antibiotics to combat infections including those caused by antibiotic-resistant bacteria such as methicillin-resistant staphylococci and vancomysin-resistant enterococci.  相似文献   

5.
Myeloid differentiation factor 88 (MyD88) is an adapter molecule required for signal transduction via Toll-like receptors (TLRs) and receptors of the IL-1 family. Consequently, MyD88-deficient mice are highly susceptible to bacterial infections, including systemic infection with Staphylococcus aureus. To determine the role of MyD88 in innate immunity to bacterial pneumonia, we exposed MyD88-deficient and wild-type mice to aerosolized Pseudomonas aeruginosa or S. aureus. As predicted, MyD88-deficient mice failed to mount an early cytokine or inflammatory response or to control bacterial replication after infection with P. aeruginosa, which resulted in necrotizing pneumonia and death. By contrast, MyD88-deficient mice controlled S. aureus infection despite blunted local cytokine and inflammatory responses. Thus, whereas MyD88-dependent signaling is integral to the initiation of cytokine and inflammatory responses to both pathogens following infection of the lower respiratory tract, MyD88 is essential for innate immunity to P. aeruginosa but not S. aureus.  相似文献   

6.
Lactoferrin (Lf) is an iron-binding protein of external secretions and neutrophil secondary granules with antimicrobial and immunomodulatory activities. To further define these properties of Lf, we have investigated the response to Staphylococcus aureus infection in transgenic mice carrying a functional human Lf gene. The transgenic mice cleared bacteria significantly better than congenic littermates, associated with a trend to reduced incidence of arthritis, septicemia, and mortality. We identified two pathways by which S. aureus clearance was enhanced. First, human Lf directly inhibited the growth of S. aureus LS-1 in vitro. Second, S. aureus-infected transgenic mice exhibited enhanced Th1 immune polarization. Thus, spleen cells from infected transgenic mice produced higher levels of TNF-alpha and IFN-gamma and less IL-5 and IL-10 upon stimulation ex vivo with the exotoxin toxic shock syndrome toxin-1 compared with congenic controls. To confirm that these effects of Lf transgene expression could occur in the absence of live bacterial infection, we also showed that Lf-transgenic DBA/1 mice exhibited enhanced severity of collagen-induced arthritis, an established model of Th1-induced articular inflammation. Higher levels of stainable iron in the spleens of transgenic mice correlated with human Lf distribution, but all other parameters of iron metabolism did not differ between transgenic mice and wild-type littermates. These results demonstrate that human Lf can mediate both antimicrobial and immunomodulatory activities with downstream effects on the outcome of immune pathology in infectious and inflammatory disease.  相似文献   

7.
To investigate whether immunization with glutathione S-transferase (GST) and mutant toxic shock syndrome toxin 1 (mTSST-1) fusion protein can protect against Staphylococcus aureus infection, we purified a non-toxic mutant GST-mTSST-1 fusion protein. Mice were immunized with the GST-mTSST-1 plus alum adjuvant and then challenged with viable S. aureus. The results showed that the survival rate of GST-mTSST-1-immunized group was higher and the bacteria counts in the organs were significantly lower than those of the non-immunized mice. Immunization with GST-mTSST-1 induced strongly the production of TSST-1 specific antibodies, especially immunoglobulin G1 and immunoglobulin G2b. Furthermore, the serum samples from GST-mTSST-1-immunized mice also significantly inhibited interferon-gamma and tumor necrosis factor-alpha production from murine spleen cells by TSST-1. These results suggest that vaccination with GST-mTSST-1 provides protection against S. aureus infection and that the protection might be mediated by TSST-1-neutralizing antibody.  相似文献   

8.
金黄色葡萄球菌是导致医院院内感染的主要病原。由于金黄色葡萄球菌极易产生抗药性,因此疫苗免疫是预防该细菌感染的主要手段。作为一个粘附分子,凝集因子B(ClfB)的作用是使金黄色葡萄球菌能够在宿主黏膜定植,是预防该菌感染的一个重要的靶分子。本研究成功地在大肠杆菌中表达了可溶的ClfB N1-N3结构域蛋白(Truncated-ClfB),并且利用亲和层析、离子交换层析和凝胶过滤技术对其进行了纯化。用纯化后的Truncated-ClfB免疫新西兰大白兔,收集三免后的血清检测其抗体水平并且利用流式细胞术检测抗血清的调理吞噬活性。检测结果表明,三免后的兔源Truncated-ClfB抗血清抗体效价高达1:640 000;与免疫前兔源血清相比,兔源Truncated-ClfB抗血清能够显著增加多形核白细胞(Polymorphonuclear leukocytes,PMN)对金黄色葡萄球菌的吞噬效率(P0.01)。结果表明Truncated-Clf B有希望作为金黄色葡萄球菌疫苗的候选抗原。  相似文献   

9.
L Cao  C Dai  Z Li  Z Fan  Y Song  Y Wu  Z Cao  W Li 《PloS one》2012,7(7):e40135
BmKn2 is an antimicrobial peptide (AMP) characterized from the venom of scorpion Mesobuthus martensii Karsch by our group. In this study, Kn2-7 was derived from BmKn2 to improve the antibacterial activity and decrease hemolytic activity. Kn2-7 showed increased inhibitory activity against both gram-positive bacteria and gram-negative bacteria. Moreover, Kn2-7 exhibited higher antibacterial activity against clinical antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). In addition, the topical use of Kn2-7 effectively protected the skin of mice from infection in an S. aureus mouse skin infection model. Kn2-7 exerted its antibacterial activity via a bactericidal mechanism. Kn2-7 killed S. aureus and E. coli rapidly by binding to the lipoteichoic acid (LTA) in the S. aureus cell wall and the lipopolysaccharides (LPS) in the E. coli cell wall, respectively. Finally, the hemolytic activity of Kn2-7 was significantly decreased, compared to the wild-type peptide BmKn2. Taken together, the Kn2-7 peptide can be developed as a topical therapeutic agent for treating bacterial infections.  相似文献   

10.
We investigated the expression of an acquired host resistance against Staphylococcus aureus infection in mice. When C57BL/6 mice were immunized with viable S. aureus and challenged with S. aureus eight weeks later, the elimination of S. aureus from the spleen and liver was enhanced in the immunized mice compared with the nonimmunized mice. When gamma interferon (IFN-gamma(-/-)) mice were immunized and challenged, the bacterial numbers in the organs of immunized mice were comparable to those in the nonimmunized mice, suggesting that IFN-gamma plays a critical role in an acquired host resistance against S. aureus infection. IFN-gamma(-/-) mice produced the lower level of anti-S. aureus immunoglobulin M (IgM) and IgG2a antibodies compared with C57BL/6 mice. To elucidate the role of IFN-gamma produced during a challenge with S. aureus, a single injection of anti-IFN-gamma monoclonal antibody to mice was carried out 1 h before challenge. An acquired resistance against S. aureus infection was inhibited by injecting with anti-IFN-gamma monoclonal antibody. However, anti-IFN-gamma monoclonal antibody treatment failed to modulate anti-S. aureus IgM, IgG1 or IgG2a responses in these animals. These results demonstrated that IFN-gamma is required for an acquired resistance against S. aureus infection in mice. However, IFN-gamma induced during the challenge failed to affect the secondary antibody responses.  相似文献   

11.
Mannose-binding lectin (MBL)-associated serine proteases (MASPs) are responsible for activation of the lectin complement pathway. Three types of MASPs (MASP-1, MASP-2, and MASP-3) are complexed with MBL and ficolins in serum. Although MASP-1 and MASP-2 are known to contribute to complement activation, the function of MASP-3 remains unclear. In this study, we investigated the mechanism of MASP-3 activation and its substrate using the recombinant mouse MASP-3 (rMASP-3) and several different types of MASP-deficient mice. A proenzyme rMASP-3 was obtained that was not autoactivated during preparation. The recombinant enzyme was activated by incubation with Staphylococcus aureus in the presence of MBL-A, but not MBL-C. In vivo studies revealed the phagocytic activities of MASP-1/3-deficient mice and all MASPs (MASP-1/2/3)-deficient mice against S. aureus and bacterial clearance in these mice were lower than those in wild-type and MASP-2-deficient mice. Sera from all MASPs-deficient mice showed significantly lower C3 deposition activity on the bacteria compared with that of wild-type serum, and addition of rMASP-3 to the deficient serum restored C3 deposition. The low C3 deposition in sera from all MASPs-deficient mice was probably caused by the low level factor B activation that was ameliorated by the addition of rMASP-3. Furthermore, rMASP-3 directly activated factors B and D in vitro. These results suggested that MASP-3 complexed with MBL is converted to an active form by incubation with bacterial targets, and that activated MASP-3 triggered the initial activation step of the alternative complement pathway.  相似文献   

12.
The interleukin-1 receptor-associated kinase-1 (IRAK-1) mediates signal transduction from Toll-like/IL-1/IL-18 receptors. Though a critical protective role against Staphylococcus aureus infection has been previously attributed to myeloid differentiation factor 88 (MyD88) and IRAK-4, both also involved in TLR/IL-1/IL-18 signaling, the role of IRAK-1 is unknown. IRAK-1-deficient (IRAK-1-/-) and wild-type mice were inoculated i.v. with 2 x 10(7) or 1 x 10(6) S. aureus per mouse to evaluate the role of IRAK-1 in S. aureus sepsis. Since IRAK-1 transduces IL-1R signals, IL-1R-/- mice were also included in experiments. IRAK-1-/- mice are susceptible to a high dose of S. aureus compared to wild-type controls. In contrast to the high mortality and extensive weight loss seen in IL-1R-deficient mice in response to 1 x 10(6) S. aureus, IRAK-1-/- mice are resistant to this low dose of S. aureus. Thus IRAK-1 plays an important role in the host response to staphylococcal sepsis.  相似文献   

13.
Staphylococcus aureus is a significant cause of hospital and community acquired pneumonia and causes secondary infection after influenza A. Recently, patients with hyper-IgE syndrome, who often present with S. aureus infections of the lung and skin, were found to have mutations in STAT3, required for Th17 immunity, suggesting a potential critical role for Th17 cells in S. aureus pneumonia. Indeed, IL-17R(-/-) and IL-22(-/-) mice displayed impaired bacterial clearance of S. aureus compared with that of wild-type mice. Mice challenged with influenza A PR/8/34 H1N1 and subsequently with S. aureus had increased inflammation and decreased clearance of both virus and bacteria. Coinfection resulted in greater type I and II IFN production in the lung compared with that with virus infection alone. Importantly, influenza A coinfection resulted in substantially decreased IL-17, IL-22, and IL-23 production after S. aureus infection. The decrease in S. aureus-induced IL-17, IL-22, and IL-23 was independent of type II IFN but required type I IFN production in influenza A-infected mice. Furthermore, overexpression of IL-23 in influenza A, S. aureus-coinfected mice rescued the induction of IL-17 and IL-22 and markedly improved bacterial clearance. These data indicate a novel mechanism by which influenza A-induced type I IFNs inhibit Th17 immunity and increase susceptibility to secondary bacterial pneumonia.  相似文献   

14.
Abstract Several exotoxins of Staphylococcus aureus were shown to modulate the host immune system by stimulation of monokine release. BALB/c mice infected intravenously (i.v.) with live cells if S. aureus , strain Cowan 1, had a detectable serum level of TNF-α at 3, 4 and 5 h after injection. When S. epidermidis (strain F3380, clinical isolate) was used to infect mice, the level of TNF-α was lower (the detection limit of the cytotoxicity assay with WEHI cells was 40 pg ml). Kinetics of TNF synthesis was different from that observed in experimental infections caused by Gram-negative bacteria. Similarly to TNF-α, IL-1α appears in a measureable level at 3 h after i.v. injection of bacteria. The highest serum level of IFN-γ was observed 12 h after infection with both S. aureus and S. epidermidis . A quantity ten times more of S. epedermidis than of S. aureus cells was required to induce similar levels of TNF-α and IFN-γ administered in vivo in four daily doses followed by infection of S. aureus resulted in increased elimination of bacteria from the spleen, liver and peritoneal cavity of mice.  相似文献   

15.
RIG-I-like receptors and Toll-like receptors (TLRs) play important roles in the recognition of viral infections. However, how these molecules contribute to the defense against poliovirus (PV) infection remains unclear. We characterized the roles of these sensors in PV infection in transgenic mice expressing the PV receptor. We observed that alpha/beta interferon (IFN-α/β) production in response to PV infection occurred in an MDA5-dependent but RIG-I-independent manner in primary cultured kidney cells in vitro. These results suggest that, similar to the RNA of other picornaviruses, PV RNA is recognized by MDA5. However, serum IFN-α levels, the viral load in nonneural tissues, and mortality rates did not differ significantly between MDA5-deficient mice and wild-type mice. In contrast, we observed that serum IFN production was abrogated and that the viral load in nonneural tissues and mortality rates were both markedly higher in TIR domain-containing adaptor-inducing IFN-β (TRIF)-deficient and TLR3-deficient mice than in wild-type mice. The mortality rate of MyD88-deficient mice was slightly higher than that of wild-type mice. These results suggest that multiple pathways are involved in the antiviral response in mice and that the TLR3-TRIF-mediated signaling pathway plays an essential role in the antiviral response against PV infection.  相似文献   

16.
Human group IIA-secreted phospholipase A(2) (sPLA(2)-IIA) is a bactericidal molecule important for the innate immune defense against Gram-positive bacteria. In this study, we analyzed its role in the host defense against Streptococcus pyogenes, a major human pathogen, and demonstrated that this bacterium has evolved a previously unidentified mechanism to resist killing by sPLA(2)-IIA. Analysis of a set of clinical isolates demonstrated that an ~500-fold higher concentration of sPLA(2)-IIA was required to kill S. pyogenes compared with strains of the group B Streptococcus, which previously were shown to be sensitive to sPLA(2)-IIA, indicating that S. pyogenes exhibits a high degree of resistance to sPLA(2)-IIA. We found that an S. pyogenes mutant lacking sortase A, a transpeptidase responsible for anchoring LPXTG proteins to the cell wall in Gram-positive bacteria, was significantly more sensitive (~30-fold) to sPLA(2)-IIA compared with the parental strain, indicating that one or more LPXTG surface proteins protect S. pyogenes against sPLA(2)-IIA. Importantly, using transgenic mice expressing human sPLA(2)-IIA, we showed that the sortase A-mediated sPLA(2)-IIA resistance mechanism in S. pyogenes also occurs in vivo. Moreover, in this mouse model, we also showed that human sPLA(2)-IIA is important for the defense against lethal S. pyogenes infection. Thus, we demonstrated a novel mechanism by which a pathogenic bacterium can evade the bactericidal action of sPLA(2)-IIA and we showed that sPLA(2)-IIA contributes to the host defense against S. pyogenes infection.  相似文献   

17.
TLR2 plays a role as a pattern-recognition receptor in the innate immune response involving secreted proteins against microbial pathogens. To examine its possible involvement in the cellular response, we determined the levels of the engulfment and subsequent killing of bacteria by macrophages prepared from TLR2-deficient and wild-type mice. The level of the engulfment of Staphylococcus aureus or Escherichia coli was almost the same between TLR2-lacking and wild-type macrophages. However, the colony-forming ability of engulfed S. aureus, but not of E. coli, decreased to a greater extent in TLR2-lacking macrophages than in the wild-type control. The incubation with S. aureus caused activation of JNK in wild-type macrophages but not in TLR2-lacking macrophages, and the pretreatment of wild-type macrophages with a JNK inhibitor increased the rate of killing of engulfed S. aureus, but again not of E. coli. In addition, the number of colonies formed by engulfed S. aureus increased in the JNK-dependent manner when TLR2-lacking macrophages were pretreated with LPS. Furthermore, JNK seemed to inhibit the generation of superoxide, not of NO, in macrophages. These results collectively suggested that the level of superoxide is reduced in macrophages that have engulfed S. aureus through the actions of TLR2-activated JNK, resulting in the prolonged survival of the bacterium in phagosomes. The same regulation did not influence the survival of E. coli, because this bacterium was more resistant to superoxide than S. aureus. We propose a novel bacterial strategy for survival in macrophages involving the hijacking of an innate immune receptor.  相似文献   

18.
The increasing frequency, severity and antimicrobial resistance of Staphylococcus aureus infections has made the development of immunotherapies against this pathogen more urgent than ever. Previous immunization attempts using monovalent antigens resulted in at best partial levels of protection against S. aureus infection. We therefore reasoned that synthesizing a bivalent conjugate vaccine composed of two widely expressed antigens of S. aureus would result in additive/synergetic activities by antibodies to each vaccine component and/or in increased strain coverage. For this we used reductive amination, to covalently link the S. aureus antigens clumping factor A (ClfA) and deacetylated poly-N-β-(1-6)-acetyl-glucosamine (dPNAG). Mice immunized with 1, 5 or 10 μg of the dPNAG-ClfA conjugate responded in a dose-dependent manner with IgG to dPNAG and ClfA, whereas mice immunized with a mixture of ClfA and dPNAG developed significantly lower antibody titers to ClfA and no antibodies to PNAG. The dPNAG-ClfA vaccine was also highly immunogenic in rabbits, rhesus monkeys and a goat. Moreover, affinity-purified, antibodies to ClfA from dPNAG-ClfA immune serum blocked the binding of three S. aureus strains to immobilized fibrinogen. In an opsonophagocytic assay (OPKA) goat antibodies to dPNAG-ClfA vaccine, in the presence of complement and polymorphonuclear cells, killed S. aureus Newman and, to a lower extent, S. aureus Newman ΔclfA. A PNAG-negative isogenic mutant was not killed. Moreover, PNAG antigen fully inhibited the killing of S. aureus Newman by antisera to dPNAG-ClfA vaccine. Finally, mice passively vaccinated with goat antisera to dPNAG-ClfA or dPNAG-diphtheria toxoid conjugate had comparable levels of reductions of bacteria in the blood 2 h after infection with three different S. aureus strains as compared to mice given normal goat serum. In conclusion, ClfA is an immunogenic carrier protein that elicited anti-adhesive antibodies that fail to augment the OPK and protective activities of antibodies to the PNAG cell surface polysaccharide.  相似文献   

19.
Prostaglandin (PG) E(2) is considered to participate in the storage of fat in adipocytes and hepatocytes, but roles of group IVA phospholipase A(2) (PLA(2)), a key PLA(2) isozyme in the arachidonic acid cascade, remain unclear. The present study examined the possible involvement of the enzyme using group IVA PLA(2)-deficient mice (C57BL/6 background, 22 weeks of age) fed a normal diet (5.3% fat). The ratio of epididymal fat pad weight to body weight was significantly reduced in group IVA PLA(2)-deficient mice compared to wild-type mice. Histological analysis revealed that in group IVA PLA(2)-deficient mice, the adipocytes were smaller, and hepatocytes bearing cytoplasmic vacuolation were scarce. Hepatic triglyceride content and the serum levels of PGE(2) in the deficient mice were also lower. However, there was no difference in the serum levels of insulin, glucose, non-esterified free fatty acid, or total cholesterol between the deficient and wild-type mice. Our findings suggest that group IVA PLA(2) is involved in the storage of lipids in the adipose tissue and liver and in determining circulating PGE(2) levels.  相似文献   

20.
The pathologic links between Toxoplasma gondii infections and renal diseases have not yet been established. Gamma interferon (IFN-gamma) and Toll-like receptors (TLRs) are involved in the host defense mechanism against T. gondii infection. The role of IFN-gamma and TLRs in renal function of T. gondii -infected mice was studied using wild type (WT), TLR2-deficient and TLR4-deficient mice perorally infected with cysts of an avirulent cyst-forming Fukaya strain of T. gondii. T. gondii was abundant in kidneys in IFN-gamma KO (GKO) mice as determined by a quantitative competitive-polymerase chain reaction (QC-PCR). But, T. gondii was not detected in kidneys in WT, TLR2-deficient and TLR4-deficient mice. Interestingly, renal function of TLR2-deficient and TLR4-deficient mice was damaged as evaluated by serum creatinine, serum blood urea nitrogen (BUN), and urine albumin/creatinine ratio (ACR), whereas renal function of GKO and WT mice was not damaged. Histopathology of TLR2-deficient mice exhibited glomerular and extracellular matrix swelling with advancing glomerular tissue proliferation, thickened Bowman's capsules and vacuolization of tubules. Renal immunofluorescence study of T. gondii -infected TLR2-deficient mice displayed positive staining of the glomerular basement membrane, mesangial areas and peritubular capillaries. The damage of kidney from TLR4-deficient mice was less severe compared to TLR2-deficient mice, and histopathological damage of kidney was not observed in WT and GKO mice. These results indicate that TLR2, but not IFN-gamma, plays a role in the protection of the renal function against T. gondii infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号