首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Patch-clamp studies carried out on the tonoplast of the moss Physcomitrella patens point to existence of two types of cation-selective ion channels: slowly activated (SV channels), and fast-activated potassium-selective channels. Slowly and instantaneously saturating currents were observed in the whole-vacuole recordings made in the symmetrical KCl concentration and in the presence of Ca2+ on both sides of the tonoplast. The reversal potential obtained at the KCl gradient (10 mM on the cytoplasmic side and 100 mM in the vacuole lumen) was close to the reversal potential for K+ (E K), indicating K+ selectivity. Recordings in cytoplasm-out patches revealed two distinct channel populations differing in conductance: 91.6 ± 0.9 pS (n = 14) at ?80 mV and 44.7 ± 0.7 pS (n = 14) at +80 mV. When NaCl was used instead of KCl, clear slow vacuolar SV channel activity was observed both in whole-vacuole and cytoplasm-out membrane patches. There were no instantaneously saturating currents, which points to impermeability of fast-activated potassium channels to Na+ and K+ selectivity. In the symmetrical concentration of NaCl on both sides of the tonoplast, currents have been measured exclusively at positive voltages indicating Na+ influx to the vacuole. Recordings with different concentrations of cytoplasmic and vacuolar Ca2+ revealed that SV channel activity was regulated by both cytoplasmic and vacuolar calcium. While cytoplasmic Ca2+ activated SV channels, vacuolar Ca2+ inhibited their activity. Dependence of fast-activated potassium channels on the cytoplasmic Ca2+ was also determined. These channels were active even without Ca2+ (2 mM EGTA in the cytosol and the vacuole lumen), although their open probability significantly increased at 0.1 μM Ca2+ on the cytoplasmic side. Apart from monovalent cations (K+ and Na+), SV channels were permeable to divalent cations (Ca2+ and Mg2+). Both monovalent and divalent cations passed through the channels in the same direction—from the cytoplasm to the vacuole. The identity of the vacuolar ion channels in Physcomitrella and ion channels already characterised in different plants is discussed.  相似文献   

2.
Single channel properties, whole vacuole currents and protonpumping capacity were investigated in the intact vacuoles andmembrane patches of leaf tonoplast from the halophyte Suaedamaritima. ATP-dependent proton pumping capacity was similarto non-halophytes whether the plants were or were not grownwith added sodium chloride (200 mM). The most abundant ion channelwas inward rectifying and had a single channel conductance of58 pS in symmetrical KCl solutions (100 mM) to 170 pS usingphysiological conditions (50/150 mM KCl/NaCl cytoplasmic side,50/450 mM KCl/NaCl vacuolar side). The channel showed all thecharacteristics of the SV type channel described in many otherspecies. In the open state these channels caused tonoplast conductancesin excess of 0.5 nS m2– but conductances were much lowerusing physiological ion concentrations and membrane potentials.In spite of the poor selectivity and the potentially large tonoplastconductance it is calculated that compartmentation of NaCl inleaf vacuoles can be sustained by about 30% of ATP-dependentproton pumping capacity. The results do not indicate any specialadaptation of the tonoplast ion channels in the halophyte. Key words: Ion-channels, patch-clamp, salt-tolerance, vacuole  相似文献   

3.
Summary Regulation of ion-channel activity must take place in order to regulate ion transport. In case of tonoplast ion channels, this is possible on both the cytoplasmic and the vacuolar side. Isolated vacuoles of youngVigna unguiculata seedlings show no or hardly any channel activity at tonoplast potentials >80 mV, in the vacuole-attached configuration. When the configuration is changed to an excised patch or whole vacuole, a fast (excised patch) or slow (whole vacuole) increase of inward rectifying channel activity is seen. This increase is accompanied by a shift in the voltage-dependent gating to less hyperpolarized potentials. In the whole vacuole configuration the level of inward current increases and also the activation kinetics changes. Induction of channel activity takes up to 20 min depending on the age of the plants used and the diameter of the vacuole. On the basis of the estimated diffusion velocities, it is hypothesized that a compound with a mol wt of 20,000 to 200,000 is present in vacuoles of young seedlings, which shifts the population of channels to a less voltage-sensitive state.Ecotrans publication no. 27.  相似文献   

4.
Abscisic acid (ABA) induces a transient stimulation of 86Rb+ from isolated guard cells of Commelina communis L. When ABA is added after 30–50 min of wash-out in the absence of ABA, when tracer is almost entirely vacuolar, its effects on vacuolar release are measured. When ABA is added early in the wash-out (at 2–4 min), when both cytoplasm and vacuole are labelled, the resulting efflux includes both vacuolar and cytoplasmic contributions. Detailed comparison of rates of efflux in the absence of ABA, and in the presence of ABA added early and late in the wash-out, allows the effects of ABA on plasmalemma and tonoplast fluxes to be assessed. Three effects of ABA can be distinguished: these are stimulation of the 86Rb+ flux from vacuole to cytoplasm (by twofold to 6.7-fold); stimulation of the plasmalemma efflux, by up to twofold, a smaller factor than that of the tonoplast effect and variable between experiments; and a doubling of the half-time for cytoplasmic exchange in ABA, taken to reflect an increase in cytoplasmic ion content as ions flood out of the vacuole. Concentrations of ABA of 0.1–0.2 µM and 1–10 µM are equally effective in the stimulation of plasmalemma efflux, but the effects on tonoplast fluxes are both delayed and reduced at low external concentrations of ABA. It is argued that the delay reflects the need for a threshold internal ABA to be reached before the initiation of vacuolar release, and the reduction reflects the sensitivity of the extent of activation of tonoplast ion channels to concentration of internal ABA. It is likely that the plasmalemma change is mediated by external ABA, and could be the result of the modulation of the stretch-activated channel suggested previously.  相似文献   

5.
Cytoplasmic polyamines block the fast-activating vacuolar cation channel   总被引:9,自引:1,他引:8  
The fast-activating vacuolar (FV) channel dominates the electrical characteristics of the tonoplast at physiological free Ca2+ concentrations. Since polyamines are known to increase in plant cells in response to stress, the regulation of FV channels by polyamines was investigated. Patch-clamp measurements were performed on whole barley ( Hordeum vulgare ) mesophyll vacuoles and on excised tonoplast patches. The trivalent polyamine spermidine and the tetravalent polyamine spermine blocked FV channels with Kd≈ 100 μM and Kd≈ 5 μM, respectively. Increasing cytosolic and vacuolar Ca2+ had no effect on putrescine and spermidine binding to FV channels but slightly decreased the affinity for spermine. The inhibition of FV channels by all three polyamines was not voltage-dependent. This points to a different mode of binding compared to inward rectifier K+ channels and Ca2+-permeable glutamate receptor channels from animal cells, which show rectification due to a voltage-dependent block by polyamines. In plant cells, the common polyamines (putrescine, spermidine and spermine) are likely to mediate a salt stress-induced decrease of ion flux across the vacuolar membrane by blocking FV channels.  相似文献   

6.
The properties of the vacuolar membrane (tonoplast) ion channels of sugar beet (Beta vulgaries) cell cultures were studied using the patch-clamp technique. Tonoplast currents displayed inward rectification in the whole vacuole and isolated outside-out patch configurations and permeability ratios PK+/PNa+ = 1 and PK+/PCl− = 5. Amiloride and two of its analogs, 5-(N-methyl-N-isobutyl)-amiloride and benzamil, inhibitors of Na+ channels in animal systems, blocked inward currents by reducing single-channel openings. Concentrations for 50% inhibition of vacuolar currents of 730 nanomolar, 130 nanomolar, and 1.5 micromolar for amiloride, benzamil, and 5-(N-methyl-N-isobutyl)-amiloride, respectively, were obtained from whole-vacuole recordings. The high inhibitory action (affinity) of amiloride and its analogs for the tonoplast cation channel suggests that these compounds could be used for the isolation and biochemical characterization of this protein.  相似文献   

7.
Water loss from plants is determined by the aperture of stomatal pores in the leaf epidermis, set by the level of vacuolar accumulation of potassium salt, and hence volume and turgor, of a pair of guard cells. Regulation of ion fluxes across the tonoplast, the key to regulation of stomatal aperture, can only be studied by tracer flux measurements. There are two transport systems in the tonoplast. The first is a Ca2+-activated channel, inhibited by phenylarsine oxide (PAO), responsible for the release of vacuolar K+(Rb+) in response to the “drought” hormone, abscisic acid (ABA). This channel is sensitive to pressure, down-regulated at low turgor and up-regulated at high turgor, providing a system for turgor regulation. ABA induces a transient stimulation of vacuolar ion efflux, during which the flux tracks the ion content (volume, turgor), suggesting ABA reduces the set-point of a control system. The second system, which is PAO-insensitive, is responsible for an ion flux from vacuole to cytoplasm associated with inward water flow following a hypo-osmotic transfer. It is suggested that this involves an aquaporin as sensor, and perhaps also as responder; deformation of the aquaporin may render it ion-permeable, or, alternatively, the deformed aquaporin may signal to an associated ion channel, activating it. Treatment with inhibitors of aquaporins, HgCl2 or silver sulfadiazine, produces a large transient increase in ion release from the vacuole, also PAO-insensitive. It is suggested that this involves the same aquaporin, either rendered directly ion-permeable, or signalling to activate an associated ion channel.  相似文献   

8.
Activities of ion pumps and H+-conducting channels in the plasmalemma of illuminated characean algae are distributed inhomogeneously along the internode, which accounts for the shifts of surface pH up to 3.5 units between various cells regions. Spatial variations in cytoplasmic properties provide the basis for uneven distribution of photosynthetic activity along the cell length and might affect the operation of H+-transporting systems at the tonoplast. In order to visualize the longitudinal distribution of the vacuolar pH in Chara corallina internodal cells, the pH microelectrode was inserted into the vacuole and the cell sap was gradually displaced along the cell during intracellular perfusion with an artificial medium. Fluorescein was added to the perfusion medium as a fluorescent marker to detect the arrival of the replacing medium into the area of pH and fluorescence measurements. In light-adapted cells, nonuniform longitudinal pH profiles were observed, with pH shifts as large as 2–2.5 units. In dark-adapted cells, the pH shifts in longitudinal profiles did not exceed 0.5 pH units. The occurrence of large pH changes within the vacuole of individual internodes indicates the possibility of nonuniform distribution of the tonoplast H+-transporting systems in different regions of the illuminated cell.  相似文献   

9.
Summary This study is concerned with the characterization of the ionic currents in the vacuolar membrane (tonoplast) of plant cells. Voltage patch-clamp experiments at the whole vacuole and single channel levels were employed to study the effects of cytoplasmic chloride on the tonoplast inward rectifying currents of sugar beet cultured cells. Whole vacuole experiments showed that removal of cytoplasmic chloride induced a decrease in the level of the inward currents, an effect that was reversed upon returning to control levels of cytoplasmic chloride. Substitution of cytoplasmic chloride by any other anion (organic or inorganic) resulted in a reduction in the level of the inward currents. At a given negative tonoplast potential, the inward currents showed a linear relationship with the concentration of cytoplasmic chloride between 10 and 100 mM, with the slope of these relationships increasing as the potential was made more negative. Single channel experiments showed that reduction of cytoplasmic chloride changed the gating mechanism of the channels without affecting the single channel conductance. Reduction of cytoplasmic chloride caused a decrease in the open probability of the tonoplast cation channels by reducing their mean open time and by inducing the appearance of an additional closed state.This work was supported by the National Science and Engineering Research Council of Canada.  相似文献   

10.
Summary The patch-clamp technique is used here to investigate the kinetics of Ca2+ block in single high-conductance Ca2+-activated K+ channels. These channels are detected in the membrane surounding cytoplasmic drops fromChara australis, a membrane which originates from the tonoplast of the parent cell. The amplitudes and durations of single channel events are measured over a wide range of membrane potential (–300 to 200 mV). Ca2+ on either side of the channel reduces its K+ conductance and alters its ion-gating characteristics in a voltage-dependent manner. This Ca2+-induced attenuation of conductance is analyzed using the theory of diffusion-limited ion flow through pores. Interaction of external Ca2+ with the channel's ion-gating mechanism is examined in terms of a kinetic model for ion-gating that includes two voltage-dependent gating mechanisms. The kinetics of channel block by external Ca2+ indicates that (i) external Ca2+ binds at two sites, a superficial site and a deep site, located at 8 and 40% along the trans-pore potential difference, (ii) the external vestibule cannot be occupied by more than one Ca2+ or K+, and (iii) the kinetics of Ca2+ binding at the deep site is coupled with that of a voltage-dependent gate on the external side of the channel. Kinetics of channel block by internal Ca2+ indicates that more than one Ca2+ is involved.  相似文献   

11.
The patch-clamp technique is used to investigate divalent ion block of the large-conductance K+ channel from Chara australis. Block by Ba2+, Ca2+, Mg2+, and Pt(NH3)4(2+) from the vacuolar and cytoplasmic sides is used to probe the structure of, and ion interactions within, the pore. Five divalent ion binding sites are detected. Vacuolar Ca2+ reduces channel conductance by binding to a site located 7% along the membrane potential difference (site 1, delta = 0.07; from the vacuolar side); it also causes channel closures with mean a duration of approximately 0.1-1 ms by binding at a deeper site (site 2, delta = 0.3). Ca2+ can exit from site 2 into both the vacuolar and cytoplasmic solutions. Cytoplasmic Ca2+ reduces conductance by binding at two sites (site 3, delta = -0.21; site 4, delta = -0.6; from the cytoplasmic side) and causes closures with a mean duration of 10-100 ms by binding to site 5 (delta = -0.7). The deep sites exhibit stronger ion specificity than the superficial sites. Cytoplasmic Ca2+ binds sequentially to sites 3-5 and Ca2+ at site 5 can be locked into the pore by a second Ca2+ at site 3 or 4. Ca2+ block is alleviated by increasing [K+] on the same side of the channel. Further, Ca2+ occupancy of the deep sites (2, 4, and 5) is reduced by K+, Rb+, NH4+, and Na+ on the opposite side of the pore. Their relative efficacy correlates with their relative permeability in the channel. While some Ca2+ and K+ sites compete for ions, Ca2+ and K+ can simultaneously occupy the channel. Ca2+ binding at site 1 only partially blocks channel conduction. The results suggest the presence of four K+ binding sites on the channel protein. One cytoplasmic facing site has an equilibrium affinity of 10 mM (site 6, delta = -0.3) and one vacuolar site (site 7, delta less than 0.2) has low affinity (greater than 500 mM). Divalent ion block of the Chara channel shows many similarities to that of the maxi-K channel from rat skeletal muscle.  相似文献   

12.
Peiter E 《Cell calcium》2011,50(2):120-128
This review portrays the plant vacuole as both a source and a target of Ca2+ signals. In plants, the vacuole represents a Ca2+ store of enormous size and capacity. Total and free Ca2+ concentrations in the vacuole vary with plant species, cell type, and environment, which is likely to have an impact on vacuolar function and the release of vacuolar Ca2+. It is known that cytosolic Ca2+ signals are often generated by release of the ion from internal stores, but in very few cases has a role of the vacuole been directly demonstrated. Biochemical and electrophysical studies have provided evidence for the operation of ligand- and voltage-gated Ca2+-permeable channels in the vacuolar membrane. The underlying molecular mechanisms are largely unknown with one exception: the slow vacuolar channel, encoded by TPC1, is the only vacuolar Ca2+-permeable channel cloned to date. However, due to its complex regulation and its low selectivity amongst cations, the role of this channel in Ca2+ signalling is still debated. Many transport proteins at the vacuolar membrane are also targets of Ca2+ signals, both by direct binding of Ca2+ and by Ca2+-dependent phosphorylation. This enables the operation of feedback mechanisms and integrates vacuolar transport systems in the wider signalling network of the plant cell.  相似文献   

13.
The giant marine alga Valonia utricularis is capable of regulating its turgor pressure in response to changes in the osmotic pressure of the sea water. The turgor pressure response comprises two phases, a fast, exponential phase arising exclusively from water shifting between the vacuole and the external medium (time constant about 10 min) and a second very slow, almost exponential phase adjusting (but not always) the turgor pressure near to the original value by release or uptake of KCl (time constant about 5 h). The changes in the vacuolar membrane potential as well as in the individual conductances of the tonoplast and plasmalemma accompanying turgor pressure regulation were measured by using the vacuolar perfusion assembly (with integrated microelectrodes, pressure transducers and pressure‐regulating valves) as described by Wang et al. (J. Membrane Biology 157, 311–321, 1997). Measurements on pressure‐clamped cells gave strong evidence that the turgor pressure, but not effects related to water flow (i.e. electro‐osmosis or streaming potential) or changes in the internal osmotic pressure and in the osmotic gradients, triggers the cascade of osmotic and electrical events recorded after disturbance of the osmotic equilibrium. The findings definitely exclude the existence of osmosensors as postulated for other plant cells and bacteria. There was also evidence that turgor pressure signals were primarily sensed by ion transporters in the vacuolar membrane because conductance changes were first recorded in the many‐folded tonoplast and then significantly delayed in the plasmalemma independent of the direction of the osmotic challenge. Consistently, turgor pressure up‐regulation (but not down‐regulation) could be inhibited reversibly by external addition of the K+ transport inhibitor Ba2+ and/or by the Cl transport inhibitor 4,4′‐diisothiocyanatostilbene‐2,2′‐disulfonic acid (DIDS). Extensive studies under iso‐, hyper‐ and hypo‐osmotic conditions revealed that K+ and Cl contribute predominantly to the plasmalemma conductance. Addition of 0.3 mm NaCN showed further that part of the K+ and Cl transporters depended on ATP. These transporters are apparently up‐regulated upon hyper‐osmotic, but not hypo‐osmotic challenge. These findings explain the strong increase of the K+ influx upon lowering turgor pressure and the less pronounced pressure‐dependence of the Cl influx of V. utricularis reported in the literature. The data derived from the blockage experiments under hypo‐osmotic conditions were also equally consistent with the experimental findings that the K+ efflux is solely passive and progressively increases with increasing turgor pressure due to an increase of the volumetric elastic modulus of the cell wall. However, despite unravelling some of the sequences and other components involved in turgor pressure regulation of V. utricularis the co‐ordination between the ion transporters in the tonoplast and plasmalemma remains unresolved because of the failure to block the tonoplast transporters by addition of Ba2+ and DIDS from the vacuolar side.  相似文献   

14.
Plantago media L. and Plantago maritima L. differ in their strategy toward salt stress, a major difference being the uptake and distribution of ions. Patch clamp techniques were applied to root cell vacuoles to study the tonoplast channel characteristics. In both species the major channel found was a 60 to 70 picosiemens channel with a low ion selectivity. The conductance of this channel for Na+ was the same as for K+, PK+/PNa+ = 1, whereas the cation/anion selectivity (PK+/Pc1) was about 5. Gating characteristics were voltage and calcium dependent. An additional smaller channel of 25 picosiemens was present in P. maritima. In the whole vacuole configuration, the summation of the single channel currents resulted in slowly activated inward currents (t½ = 1.2 second). Inwardly directed, ATP-dependent currents could be measured against a ΔpH gradient of 1.5 units over the tonoplast. This observation strongly indicated the physiological intactness of the used vacuoles. The open probability of the tonoplast channels dramatically decreased when plants were grown on NaCl, although single channel conductance and selectivity were not altered.  相似文献   

15.
Current-voltage relationships of a cation channel in the tonoplast of Beta vulgaris, as recorded in solutions with different activities of Ca2+ and K+ (from Johannes & Sanders 1995, J. Membrane Biol. 146:211–224), have been reevaluated for Ca2+/K+ selectivity. Since conversion of reversal voltages to permeability ratios by constant field equations is expected to fail because different ions do not move independently through a channel, the data have been analyzed with kinetic channel models instead. Since recent structural information on K+ channels show one short and predominant constriction, selectivity models with only one binding site are assumed here to reflect this region kinetically. The rigid-pore model with a main binding site between two energy barriers (nine free parameters) had intrinsic problems to describe the observed current-saturation at large (negative) voltages. The alternative, dynamic-pore model uses a selectivity filter in which the binding site alternates its orientation (empty, or occupied by either Ca2+ or K+) between the cytoplasmic side and the luminal side within a fraction of the electrical distance and in a rate-limiting fashion. Fits with this model describe the data well. The fits yield about a 10% electrical distance of the selectivity filter, located about 5% more cytoplasmic than the electrical center. For K+ translocation, reorientation of the unoccupied binding site (with a preference of about 6:5 to face the lumenal side) is rate limiting. For Ca2+, the results show high affinity to the binding site and low translocation rates (<1% of the K+ translocation rate). With the fitted model Ca2+ entry through the open channel has been calculated for physiological conditions. The model predicts a unitary open channel current of about 100 fA which is insensitive to cytoplasmic Ca2+ concentrations (between 0.1 and 1 μm) and which shows little sensitivity to the voltage across the tonoplast. Received: 19 February 1997/Revised: 19 May 1997  相似文献   

16.
Opening and closing of the stomatal pore is associated with very large changes in K-salt accumulation in stomatal guard cells. This review discusses the ionic relations of guard cells in relation to the general pattern of transport processes in plant cells, in plasmalemma and tonoplast, involving primary active transport of protons, proton-linked secondary active transport, and a number of gated ion channels. The evidence available suggests that the initiation of stomatal opening is regulated through the uptake mechanisms, whereas initiation of stomatal closing is regulated by control of ion efflux at the plasmalemma, and of fluxes to and from the vacuole. In response to a closing signal there are large transient increases in efflux of both Cl? (or Br?) and Rb+ (K+) at the plasmalemma, with also a probable increase in anion flux from vacuole to cytoplasm and decrease in anion flux from cytoplasm to vacuole. A speculative hypothetical sequence of events is discussed, by which the primary response to a closing signal is an increase in Ca2+ influx at the plasmalemma, producing depolarisation and increase in cytoplasmic Ca2+. The consequent opening of Ca2+-sensitive Cl? channels, and voltage-sensitive K+ channels (also Ca2+-sensitive?) in the plasmalemma, and of a Ca2+-sensitive nonspecific channel in the tonoplast, could produce the flux effects identified by the tracer work; this speculation is also consistent with the Ca2+-sensitivity of the response to closing signals and with evidence from patch clamping that such channels exist in at least some plant cells, though not yet all shown in guard cells.  相似文献   

17.
Cytoplasmic magnesium regulates the fast activating vacuolar cation channel   总被引:2,自引:1,他引:1  
Fast activating vacuolar (FV) channels, which are permeable for small monovalent cations, dominate the ion conductance of the vacuolar membrane at physiological Ca2+ concentrations. Here the effect of Mg2+ on FV channels was studied. Patch-clamp measurements were performed on whole barley (Hordeum vulgare) mesophyll vacuoles and on excised tonoplast patches. Free Mg2+ concentrations in the millimolar range inhibited FV channels from the cytosolic and the vacuolar side. Increasing cytosolic free Mg2+ decreased the open probability of FV channels without affecting single channel current amplitudes. The Mg2+ effect showed a bell-shaped voltage-dependence and was most pronounced at voltages between -40 and -60 mV. The dose dependence of the FV channel inhibition by cytosolic Mg2+ could be described by a simple Michaelis-Menten type of binding with Kd values of 10 and 35 M at -60 mV and +100 mV, respectively.  相似文献   

18.
Glass microelectrodes filled with 3 molar KCl are widely used to measure intracellular potentials and it is usual to try to minimize their electrolyte loss. In these experiments we have used the ionic leak of our microelectrodes, filled with various salt solutions, to introduce a given ion into the red beet vacuole. This allowed us to show that NO3 ions reduce the magnitude of the current spectral density while they do not change the resistance of the tonoplast. This is true when NO3 is either added to the external medium or used as the microelectrode filling solution. This can be interpreted by a NO3 effect on the vacuolar side of the tonoplast, resulting in an inhibition of the ion transporting ATPase. Replacing K+ by Na+ ions in the medium has no effect on tonoplast resistance (Rs). On the contrary, when ions leaking from the microelectrode are H+, Li+ or K+, Rs is close to 4 kilohm square centimeter, whereas Rs is of the order of 30KΩ square centimeter when Na+ are the leaking ions. We also found a possible correlation between the presence of a Lorentzian in the current spectral density (cut-off frequency = 2 hertz) and a Cl efflux from the vacuole. This could be explained by the existence of Cl channels on the tonoplast.  相似文献   

19.
Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na+ sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed.  相似文献   

20.
Cytosolic calcium homeostasis is pivotal for intracellular signaling and requires sensing of calcium concentrations in the cytosol and accessible stores. Numerous Ca2+ binding sites have been characterized in cytosolic proteins. However, little is known about Ca2+ binding inside organelles, like the vacuole. The slow vacuolar (SV) channel, encoded by Arabidopsis thaliana TPC1, is regulated by luminal Ca2+. However, the D454/fou2 mutation in TPC1 eliminates vacuolar calcium sensitivity and increases store calcium content. In a search for the luminal calcium binding site, structure modeling indicated a possible coordination site formed by residues Glu-450, Asp-454, Glu-456, and Glu-457 on the luminal side of TPC1. Each Glu residue was replaced by Gln, the modified genes were transiently expressed in loss-of-TPC1-function protoplasts, and SV channel responses to luminal calcium were recorded by patch clamp. SV channels lacking any of the four negatively charged residues appeared altered in calcium sensitivity of channel gating. Our results indicate that Glu-450 and Asp-454 are directly involved in Ca2+ binding, whereas Glu-456 and Glu-457 are probably involved in connecting the luminal Ca2+ binding site to the channel gate. This novel vacuolar calcium binding site represents a potential tool to address calcium storage in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号