首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interference with stress granule (SG) accumulation is gaining increased appreciation as a common strategy used by diverse viruses to facilitate their replication and to cope with translational arrest. Here, we examined the impact of infection by herpes simplex virus 2 (HSV-2) on SG accumulation by monitoring the localization of the SG components T cell internal antigen 1 (TIA-1), Ras-GTPase-activating SH3-domain-binding protein (G3BP), and poly(A)-binding protein (PABP). Our results indicate that SGs do not accumulate in HSV-2-infected cells and that HSV-2 can interfere with arsenite-induced SG accumulation early after infection. Surprisingly, SG accumulation was inhibited despite increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), implying that HSV-2 encodes previously unrecognized activities designed to maintain translation initiation downstream of eIF2α. SG accumulation was not inhibited in HSV-2-infected cells treated with pateamine A, an inducer that works independently of eIF2α phosphorylation. The SGs that accumulated following pateamine A treatment of infected cells contained G3BP and PABP but were largely devoid of TIA-1. We also identified novel nuclear structures containing TIA-1 that form late in infection. These structures contain the RNA binding protein 68-kDa Src-associated in mitosis (Sam68) and were noticeably absent in infected cells treated with inhibitors of viral DNA replication, suggesting that they arise as a result of late events in the virus replicative cycle.  相似文献   

2.
The Epstein-Barr virus (EBV) genome-negative Burkitt's lymphoma-derived cell lines BJAB and Ramos and their in vitro EBV-converted sublines BJAB-B1, BJAB-A5, BJAB-B95-8, and AW-Ramos were infected with high multiplicities of herpes simplex virus type 1 (HSV-1; 10 to 70 PFU/cell). Cultures were monitored for cell growth and HSV-1 DNA synthesis. EBV-converted BJAB cultures were more permissive for HSV-1 infection than BJAB cultures. Significant cell killing and HSV-1 DNA synthesis were observed during the first 48 h of infection in the EBV-converted BJAB cultures but not in the BJAB cultures. The EBV-converted BJAB-B1 cell line contains an appreciable fraction of EBV-negative cells. Therefore, it was cloned. EBV-positive and -negative cells were identified by using EBV-determined nuclear antigen anti-complement immunofluorescence. Two types of subclones were identified: (i) those which contained both EBV-determined nuclear antigen-positive and -negative cells and (ii) those which contained only EBV-determined nuclear antigen-negative cells. When levels of HSV-1 DNA synthesis were measured in these subclones, it was found that the former were more permissive for HSV-1 infection than the latter. Thus, the presence of the EBV genome in BJAB cells correlates with increased permissiveness of these cells for HSV-1 during the first 48 h of infection. Nonetheless, persistent HSV-1 infections were established in both BJAB and EBV-converted BJAB-B1 cultures. No differences in extent of permissiveness for HSV-1 infection were found for Ramos and EBV-converted AW-Ramos cells.  相似文献   

3.
4.
Full-length VP22 is necessary for efficient spread of herpes simplex virus type 1 (HSV-1) from cell to cell during the course of productive infection. VP22 is a virion phosphoprotein, and its nuclear localization initiates between 5 and 7 h postinfection (hpi) during the course of synchronized infection. The goal of this study was to determine which features of HSV-1 infection function to regulate the translocation of VP22 into the nucleus. We report the following. (i) HSV-1(F)-induced microtubule rearrangement occurred in infected Vero cells by 13 hpi and was characterized by the loss of obvious microtubule organizing centers (MtOCs). Reformed MtOCs were detected at 25 hpi. (ii) VP22 was observed in the cytoplasm of cells prior to microtubule rearrangement and localized in the nucleus following the process. (iii) Stabilization of microtubules by the addition of taxol increased the accumulation of VP22 in the cytoplasm either during infection or in cells expressing VP22 in the absence of other viral proteins. (iv) While VP22 localized to the nuclei of cells treated with the microtubule depolymerizing agent nocodazole, either taxol or nocodazole treatment prevented optimal HSV-1(F) replication in Vero cells. (v) VP22 migration to the nucleus occurred in the presence of phosphonoacetic acid, indicating that viral DNA and true late protein synthesis were not required for its translocation. Based on these results, we conclude that (iv) microtubule reorganization during HSV-1 infection facilitates the nuclear localization of VP22.  相似文献   

5.
As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles.  相似文献   

6.
We have reported previously that herpes simplex virus type 1 (HSV-1) infection disrupts normal progression of the mammalian cell cycle, causing cells to enter a G(1)-like state. Infected cells were characterized by a decline in cyclin-dependent kinase 2 (CDK2) activities, loss of hyperphosphorylated retinoblastoma protein (pRb), accumulation of E2F-pocket protein complexes, and failure to initiate cellular DNA replication. In the present study, we investigated the role of the pocket proteins pRb, p107, and p130 in HSV-1-dependent cell cycle inhibition and cyclin kinase regulation by infecting murine 3T3 cells derived from wild-type (WT) mouse embryos or embryos with deletions of pRb (pRb(-/-)), p107 (p107(-/-)), p130 (p130(-/-)), or both p130 and p107 (p130(-/-)/p107(-/-)). With respect to CDK2 inhibition, viral protein accumulation, viral DNA replication, and progeny virus yield, WT, pRb(-/-), and p107(-/-) cells were essentially identical. In contrast, after infection of p130(-/-) cells, we observed no inhibition of CDK2 activity, a 5- to 6-h delay in accumulation of viral proteins, an impaired ability to form viral DNA replication compartments, and reduced viral DNA synthesis. As a result, progeny virus yield was reduced 2 logs compared to that in WT cells. Notably, p130(-/-)/p107(-/-) double-knockout cells had a virus replication phenotype intermediate between those of the p107(-/-) and p130(-/-) cells. We conclude from these studies that p130 is a key factor in regulating aspects of cell cycle progression, as well as the timely expression of viral genes and replication of viral DNA.  相似文献   

7.
The effect of herpes simplex virus type 2 (HSV-2) infection on the synthesis of DNA in human embryonic fibroblast cells was determined at temperatures permissive (37 C) and nonpermissive (42 C) for virus multiplication. During incubation of HSV-2 infected cultures at 42 C for 2 to 4 days or after shift-down from 42 to 37 C, incorporation of (3H)TdR into total DNA was increased 2-to 30-fold as compared with mock-infected cultures. Analysis of the (3H)DNA suggested that host cell DNA synthesis was induced by HSV-2 infection. Induction of host cell DNA synthesis by HSV-2 also occurred in cells arrested in DNA replication by low serum concentration. The three strains of HSV-2 tested were capable of stimulating cellular DNA synthesis. Virus inactivated by UV irradiation, heat, or neutral red dye and light did not induce cellular DNA synthesis, suggesting that an active viral genome is necessary for induction.  相似文献   

8.
9.
Geminiviruses are plant DNA viruses that replicate through DNA intermediates in plant nuclei. The viral components required for replication are known, but no host factors have yet been identified. We used immunolocalization to show that the replication proteins of the geminivirus tomato golden mosaic virus (TGMV) are located in nuclei of terminally differentiated cells that have left the cell cycle. In addition, TGMV infection resulted in a significant accumulation of the host DNA synthesis protein proliferating cell nuclear antigen (PCNA). PCNA, an accessory factor for DNA polymerase delta, was not present at detectable levels in healthy differentiated cells. The TGMV replication protein AL1 was sufficient to induce accumulation of PCNA in terminally differentiated cells of transgenic plants. Analysis of the mechanism(s) whereby AL1 induces the accumulation of host replication machinery in quiescent plant cells will provide a unique opportunity to study plant DNA synthesis.  相似文献   

10.
The 28-mer phosphorothioate oligodeoxycytidine (S-(dC)28) has been reported previously to be a strong inhibitor of herpes simplex virus type 2 (HSV-2) DNA polymerase and HSV-2 growth in cell culture. In this study, the mechanism of action of S-(dC)28 was studied. S-(dC)28 was found to interfere with the adsorption of HSV-1 and HSV-2 to HeLa cells. HSV-2 infection, but not HSV-1, was found to potentiate the uptake of S-(dC)28 into HeLa cells. The enhanced uptake reached a plateau at 6-9 h postinfection and appeared to be dose-dependent and saturable at concentrations higher than 1 microM. The amount of S-(dC)28 accumulated in HSV-2 infected cells was found to be 50 pmol/10(6) cells at 6 h postinfection, whereas no significant drug accumulation was found in uninfected cells. S-(dC)28 binding studies suggested that there are several types of tight binding sites associated with HSV-2 virions, which could play a role in the enhancement of S-(dC)28 uptake. Subcellular distribution studies showed that intracellular S-(dC)28 was associated with both nuclei and cytoplasm and remained intact. Mechanism studies suggested three different mechanisms which could be responsible for the anti-HSV-2 action of S-(dC)28; (i) S-(dC)28 could interfere with the uptake of HSV. (ii) HSV-2 infection enhances the uptake of S-(dC)28 into cells. (iii) S-(dC)28 inhibits HSV-2 DNA synthesis, possibly, by inhibiting the viral DNA polymerase. The unique mechanisms of anti-HSV action of S-(dC)28 suggest it could be a potential new agent in anti-HSV-2 chemotherapy.  相似文献   

11.
12.
Infection of human embryonic lung cells with herpes simplex virus type 1 (HSV-1) and herpes simplex type 1 (HSV-2) resulted in: (a) qualitative (nuclear cytopathologic) alterations and quantitative (nuclear area) differences in infected compared to control nuclei; (b) increased Feulgen-deoxyribonucleic acid (F-DNA) amounts in infected cells, probably due to viral DNA; (c) higher F-DNA levels in HSV-2 infected cells; and (d) increased rates of F-DNA hydrolysis in viral-infected as compared to uninfected nuclei.  相似文献   

13.
Previous results suggested that the U(L)31 gene of herpes simplex virus 1 (HSV-1) is required for envelopment of nucleocapsids at the inner nuclear membrane and optimal viral DNA synthesis and DNA packaging. In the current study, viral gene expression and NF-κB and c-Jun N-terminal kinase (JNK) activation of a herpes simplex virus mutant lacking the U(L)31 gene, designated ΔU(L)31, and its genetic repair construct, designated ΔU(L)31-R, were studied in various cell lines. In Hep2 and Vero cells infected with ΔU(L)31, expression of the immediate-early protein ICP4, early protein ICP8, and late protein glycoprotein C (gC) were delayed significantly. In Hep2 cells, expression of these proteins failed to reach levels seen in cells infected with ΔU(L)31-R or wild-type HSV-1(F) even after 18 h. The defect in protein accumulation correlated with poor or no activation of NF-κB and JNK upon infection with ΔU(L)31 compared to wild-type virus infection. The protein expression defects of the U(L)31 deletion mutant were not explainable by a failure to enter nonpermissive cells and were not complemented in an ICP27-expressing cell line. These data suggest that pU(L)31 facilitates initiation of infection and/or accelerates the onset of viral gene expression in a manner that correlates with NF-κB activation and is independent of the transactivator ICP27. The effects on very early events in expression are surprising in light of the fact that U(L)31 is designated a late gene and pU(L)31 is not a virion component. We show herein that while most pUL31 is expressed late in infection, low levels of pU(L)31 are detectable as early as 2 h postinfection, consistent with an early role in HSV-1 infection.  相似文献   

14.
In herpes simplex virus-infected cells, coreless capsids accumulate at the nuclear pores soon after infection, but subsequently disappear, suggesting that, as in adenovirus-infected cells (S. Dales and Y. Chardonnet, Virology 56:465-483, 1973), the release of viral DNA from nucleocapsids takes place at the nuclear pores. A nonlethal mutant, HSV-1(50B), produced by mutagenesis of HSV DNA fragments and selected for delayed production of plaques at 31 degrees C, accumulated coreless capsids at the nuclear pores late in infection in contrast to wild-type viruses. Recombinants selected for ability to produce plaques at 31 degrees C by marker rescue with digests of herpes simplex virus 2 DNA and selected clone fragments of HSV-1 DNA no longer accumulated empty capsids at nuclear pores late in infection. These results suggest that herpes simplex viruses encode a function which prevents accumulation of coreless capsids at nuclear pores, presumably by preventing uptake, unenvelopment, and DNA release from progeny virus, and indicate that the cold sensitivity of plaque formation and accumulation of coreless capsids might be related or comap in the S component of the genome.  相似文献   

15.
The herpes simplex virus type 1 (HSV-1) ICP27 protein is an immediate-early or alpha protein which is essential for the optimal expression of late genes as well as the synthesis of viral DNA in cultures of Vero cells. Our specific goal was to characterize the replication of a virus incapable of synthesizing ICP27 in cultured human cells. We found that infection with an HSV-1 ICP27 deletion virus of at least three separate strains of human cells did not produce immediate-early or late proteins at the levels observed following wild-type virus infections. Cell morphology, chromatin condensation, and genomic DNA fragmentation measurements demonstrated that the human cells died by apoptosis after infection with the ICP27 deletion virus. These features of the apoptosis were identical to those which occur during wild-type infections of human cells when total protein synthesis has been inhibited. Vero cells infected with the ICP27 deletion virus did not exhibit any of the features of apoptosis. Based on these results, we conclude that while HSV-1 infection likely induced apoptosis in all cells, viral evasion of the response differed among the cells tested in this study.  相似文献   

16.
The protein encoded by the UL14 gene of herpes simplex virus type 1 (HSV-1) and HSV-2 is expressed late in infection and is a minor component of the virion tegument. An UL14-deficient HSV-1 mutant (UL14D) forms small plaques and exhibits an extended growth cycle at low multiplicities of infection (MOI) compared to wild-type virus. Although UL14 is likely to be involved in the process of viral maturation and egress, its precise role in viral replication is still enigmatic. In this study, we found that immediate-early viral mRNA expression was decreased in UL14D-infected cells. Transient coexpression of UL14 and VP16 in the absence of infection stimulated the nuclear accumulation of both proteins. We intended to visualize the fate of VP16 released from the infected virion and constructed UL14-null (14D-VP16G) and rescued (14R-VP16G) viruses that expressed a VP16-green fluorescent protein (GFP) fusion protein. Synchronous high-multiplicity infection of the viruses was performed at 4°C in the absence of de novo protein synthesis. We found that the presence of UL14 in the virion had an enhancing effect on the nuclear accumulation of VP16-GFP. The lack of UL14 did not significantly alter virus internalization but affected incoming capsid transport to the nuclear pore. These observations suggested that UL14 (i) enhanced VP16 nuclear localization at the immediately early phase, thus indirectly regulating the expression of immediate-early genes, and (ii) was associated with efficient nuclear targeting of capsids. The tegument protein UL14 could be part of the machinery that regulates HSV-1 replication.  相似文献   

17.
Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.  相似文献   

18.
Aubert M  O'Toole J  Blaho JA 《Journal of virology》1999,73(12):10359-10370
Cultured human epithelial cells infected with an ICP27 deletion strain of herpes simplex virus type 1 (HSV-1) show characteristic features of apoptotic cells including cell shrinkage, nuclear condensation, and DNA fragmentation. These cells do not show such apoptotic features when infected with a wild-type virus unless the infections are performed in the presence of a protein synthesis inhibitor. Thus, both types of virus induce apoptosis, but the ICP27-null virus is unable to prevent this process from killing the cells. In this report, we show that this ICP27-deficient virus induced apoptosis in human HEp-2 cells through a pathway which involved the activation of caspase-3 and the processing of the death substrates DNA fragmentation factor and poly(ADP-ribose) polymerase. The induction of apoptosis by wild-type HSV-1 occurred prior to 6 h postinfection (hpi), and de novo viral protein synthesis was not required to induce the process. The ability of the virus to inhibit apoptosis was shown to be effective between 3 to 6 hpi. Wild-type HSV-1 infection was also able to block the apoptosis induced in cells by the addition of cycloheximide, staurosporine, and sorbitol. While U(S)3- and ICP22-deficient viruses showed a partial prevention of apoptosis, deletion of either the U(L)13 or vhs gene products did not affect the ability of HSV-1 to prevent apoptosis in infected cells. Finally, we demonstrate that in UV-inactivated viruses, viral binding and entry were not sufficient to induce apoptosis. Taken together, these results suggest that either gene expression or another RNA metabolic event likely plays a role in the induction of apoptosis in HSV-1-infected human cells.  相似文献   

19.
We performed live cell visualization assays to directly assess the interaction between competing adeno-associated virus (AAV) and herpes simplex virus type 1 (HSV-1) DNA replication. Our studies reveal the formation of separate AAV and HSV-1 replication compartments and the inhibition of HSV-1 replication compartment formation in the presence of AAV. AAV Rep is recruited into AAV replication compartments but not into those of HSV-1, while the single-stranded DNA-binding protein HSV-1 ICP8 is recruited into both AAV and HSV-1 replication compartments, although with differential staining patterns. Slot blot analysis of coinfected cells revealed a dose-dependent inhibition of HSV-1 DNA replication by wild-type AAV but not by rep-negative recombinant AAV. Consistent with this, Western blot analysis indicated that wild-type AAV affects the levels of the HSV-1 immediate-early protein ICP4 and the early protein ICP8 only modestly but strongly inhibits the accumulation of the late proteins VP16 and gC. Furthermore, we demonstrate that the presence of Rep in the absence of AAV DNA replication is sufficient for the inhibition of HSV-1. In particular, Rep68/78 proteins severely inhibit the formation of mature HSV-1 replication compartments and lead to the accumulation of ICP8 at sites of cellular DNA synthesis, a phenomenon previously observed in the presence of viral polymerase inhibitors. Taken together, our results suggest that AAV and HSV-1 replicate in separate compartments and that AAV Rep inhibits HSV-1 at the level of DNA replication.  相似文献   

20.
Viral-encoded 21 kDa protein has been localized in herpes simplex virus type 1 (HSV-1) infected cells by immunocytochemical techniques using peroxidase and colloidal gold as markers. During early infection, 21 kDa protein was shown to be in cytoplasmic areas rich in ribosomes located near the nucleus and in the viral DNA-containing fibrillo-granular material of the virus-specific electron-translucent region in the nucleus. Late in infection, an additional marked accumulation occurred in both fibrillar and granular components of the nucleolus. Host chromatin and the nuclear dense bodies remained unlabeled. No immunolabeling was obtained in the absence of DNA replication. In contrast, inhibition of RNA synthesis did not modify the distribution of the protein. On the other hand, persistence of cytoplasmic and nuclear immunolabeling following the inhibition of protein synthesis performed late in infection indicated that the distribution of 21 kDa protein represented, at least in part, sites of accumulation and retention of preexisting molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号