首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative genealogical analysis of North American (the United States and Canada) and Eastern European (Russia and Ukraine) winter wheat cultivars resistant and susceptible to common bunt has been performed. Analysis of variance applied to North American wheats has demonstrated that resistant and susceptible cultivars significantly differ from each other with respect to the contributions of common ancestors. The contributions of Oro (Bt4 and Bt7), Rio (Bt6), White Odessa (Bt1), and Florence (Bt3) to the resistant cultivars are significantly higher than their contributions to the susceptible ones. This demonstrates that the use of these resistance donors in wheat breeding for several decades has been effective. The contribution of PI-178383 (Bt8, Bt9, and Bt10) is considerably higher in the group of resistant cultivars bred after 1965. The mean contributions of Federation (Bt7) and Nebred (Bt4) are significantly higher in the group of resistant cultivars obtained before 1965; however, the differences in the contributions of these donors between new resistant and susceptible cultivars became nonsignificant. Among the Russian and Ukrainian cultivars, there are differences between groups of resistant and susceptible cultivars from different regions determined by the differences between the regional populations of the pathogen in racial composition. In the northern region, the contributions of the wheat grass (Agropyron glaucum) and the rye cultivar Eliseevskaya are significantly higher in the resistant cultivars; in the southern region, a local cultivar of the Odessa oblast is the prevalent resistant cultivar. In addition, cultivar Yaroslav Emmer is likely to be effective in the northern region; and foreign sources (Oro, Florence, Federation, and Triticum timopheevii), in the southern region. Very few sources of vertical resistance to common bunt are used for winter wheat breeding in Russia and Ukraine. The decrease in genetic diversity in favor of a few identical genes may cause adequate changes in the pathogen population and subsequent proliferation of the pathogen on the genetically identical substrate. A new interpretation of the resistance of line Lutescens 6028 as a source of new genes, Bt12 and Bt13, is suggested. Both genealogical and segregation analyses have shown that the genes determining the resistance of this line may be identical to those described earlier (Bt1, Bt3, Bt4, Bt6, and Bt7); and the high resistance of this line is determined by a combination of these genes.  相似文献   

2.
Common bunt is known to cause grain yield and quality losses in wheat due to bunt ball formation and infestation of the grain. The aim of this study is to identify for sources of resistance to common bunt in wheat genotypes using phytopathological and molecular methods. In general, studied 60 Kazakh and foreign wheat genotypes were found 15 samples with the Bt9, Bt8 and Bt11 genes. Carriers of the Bt10 gene include the five varieties. The four resistance genes, Bt8, Bt10, Bt11, Bt9, and Bt10 were identified in the Karasai variety. Phytopathological and molecular screening of Kazakh and foreign wheat genotypes selected 18 with genes for resistance to the disease. According to evaluation on an artificial infection 19 varieties showed an immune type of reaction. These varieties will be used in breeding programs as donors to create resistant varieties against the common bunt. Thus, approaches can reduce the level of fungicides use and the most effective method to control the common bunt.  相似文献   

3.
The orange wheat blossom midge, Sitodiplosis mosellana (Géhin), can significantly reduce wheat yield. Growing resistant wheat cultivars is an effective way of managing this pest. The assessment of cultivar resistance in field trials is difficult because of unequal pressure of S. mosellana caused by differences in cultivar heading dates relative to the flight period of S. mosellana adult females and huge variations of egg laying conditions from 1 day to another. To overcome these hurdles and to expose all cultivars homogeneously to the pest, an assessment method of cultivar resistance was developed under semi‐field conditions. In 2015, the resistance of 64 winter wheat cultivars to S. mosellana was assessed. Few or no larvae developed in the ears of resistant cultivars, but in susceptible cultivars, large numbers of larvae developed. Seventeen cultivars proved to be resistant, whereas 47 were susceptible. The identification of new resistant cultivars offers more opportunities to manage S. mosellana. The phenotyping method is easy, cheap, efficient and reliable. It can be used to guide the breeding of new resistant wheat cultivars. Using specific midge populations, this method could also be used in research on new resistance mechanisms in winter wheat or in other cereal species.  相似文献   

4.
Fusarium head blight (FHB) caused by Fusarium graminearum is one of the most serious diseases in wheat (Triticum aestivum) and barley (Hordeum vulgare). Dahongmil is an elite Korean wheat cultivar with relatively high resistance to FHB. To identify differentially expressed genes in the resistant cultivar Dahongmil and the susceptible cultivar Urimil after inoculation of F. graminearum, we used the Affymetrix GeneChip® Wheat Genome Array to identify 328 ESTs that were differentially expressed in inoculated seedling tissues of the two cultivars. From these, we selected 16 induced genes and found that they have defense functions, such as genes encoding pathogen resistance proteins, oxidative stress-related proteins, metabolism, and proteins involved in defense mechanisms. To verify the DNA microarray results, we tested seven of these genes by semiquantitative RT-PCR and confirmed that these defense- and stress-related genes were expressed at much higher levels in the resistant Dahongmil cultivar. We next developed a hypothetical functional gene network and identified 89 interaction pairs mediated by four of the differentially expressed genes in the hypothetical network. We further refined the network by identifying nine genes showing significant up- or down-regulation after FHB challenge in the resistant cultivar and two genes having multiple interactions with queried proteins. We hope that the set of induced genes identified in this study can be used for development of new wheat and barley cultivars with improved resistance to FHB.  相似文献   

5.
The peroxidase activities in leaves from resistant and susceptible cultivars of wheat infected and non-infected by Erysiphe graminis DC were studied. In non-infected wheat, soluble and ionic bound peroxidase activity level was found to be higher in the resistant cultivar than that in the one susceptible to Erysiphe graminis DC. After infecting wheat leaves with Erysiphe graminis DC a remarkable increase in the activity of soluble and ionic bound peroxidases was detected 5 days after inoculation only in the resistant cultivar. In the susceptible cultivar a high increase in the activity of the soluble and ionic bound peroxidases occurred only 15 days after inoculation. Using ion exchange chromatography four peroxidase fractions were obtained from infected susceptible and resistant cultivars as from non-infected ones. The fraction II in non-inoculated resistant cultivars was much higher than that in the susceptible one. This fraction increased after inoculation in both cases reaching a higher level in resistant cultivars. Fraction I was higher in the susceptible cultivar. Electrofocusing profiles of peroxidase from the susceptible and resistant cultivar differed from one another. New peroxidase bands after inoculation appeared only in the resistant cultivar.  相似文献   

6.
7.
Fusariosis, caused by the fungus Fusarium subglutinans f. sp. ananas (Syn. F. guttiforme), is one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). Identification of plant cell responses to pathogens is important in understanding the plant–pathogen relationship and establishing strategies to improve and select resistant cultivars. Studies of the structural properties and phenolic content of cell walls in resistant (Vitoria) and susceptible (Perola) pineapple cultivars, related to resistance to the fungus, were performed. The non-chlorophyll base of physiologically mature leaves was inoculated with a conidia suspension. Analyses were performed post-inoculation by light, atomic force, scanning and transmission electron microscopy, and measurement of cell wall-bound phenolic compounds. Non-inoculated leaves were used as controls to define the constitutive tissue characteristics. Analyses indicated that morphological differences, such as cell wall thickness, cicatrization process and lignification, were related to resistance to the pathogen. Atomic force microscopy indicated a considerable difference in the mechanical properties of the resistant and susceptible cultivars, with more structural integrity, associated with higher levels of cell wall-bound phenolics, found in the resistant cultivar. p-Coumaric and ferulic acids were shown to be the major phenolics bound to the cell walls and were found in higher amounts in the resistant cultivar. Leaves of the resistant cultivar had reduced fungal penetration and a faster and more effective cicatrization response compared to the susceptible cultivar.  相似文献   

8.
Jasmonate is an important endogenous chemical signal that plays a role in modulation of plant defense responses. To understand its mechanisms in regulation of rice resistance against the fungal pathogen Magnaporthe oryzae, comparative phenotype and proteomic analyses were undertaken using two near‐isogenic cultivars with different levels of disease resistance. Methyl‐jasmonate (MeJA) treatment significantly enhanced the resistance against M. oryzae in both cultivars but the treated resistant cultivar maintained a higher level of resistance than the same treated susceptible cultivars. Proteomic analysis revealed 26 and 16 MeJA‐modulated proteins in resistant and susceptible cultivars, respectively, and both cultivars shared a common set of 13 proteins. Cumulatively, a total of 29 unique MeJA‐influenced proteins were identified with many of them known to be associated with plant defense response and ROS accumulation. Consistent with the findings of proteomic analysis, MeJA treatment increased ROS accumulation in both cultivars with the resistant cultivar showing higher levels of ROS production and cell membrane damage than the susceptible cultivar. Taken together, our data add a new insight into the mechanisms of overall MeJA‐induced rice defense response and provide a molecular basis of using MeJA to enhance fungal disease resistance in resistant and susceptible rice cultivars.  相似文献   

9.
Stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.) has re-emerged as a threat to wheat production with the evolution of new pathogen races, namely TTKSK (Ug99) and its variants, in Africa. Deployment of resistant wheat cultivars has provided long-term control of stem rust. Identification of new resistance genes will contribute to future cultivars with broad resistance to stem rust. The related Canadian cultivars Peace and AC Cadillac show resistance to Ug99 at the seedling stage and in the field. The purpose of this study was to elucidate the inheritance and genetically map resistance to Ug99 in these two cultivars. Two populations were produced, an F2:3 population from LMPG/AC Cadillac and a doubled haploid (DH) population from RL6071/Peace. Both populations showed segregation at the seedling stage for a single stem rust resistance (Sr) gene, temporarily named SrCad. SrCad was mapped to chromosome 6DS in both populations with microsatellite markers and a marker (FSD_RSA) that is tightly linked to the common bunt resistance gene Bt10. FSD_RSA was the closest marker to SrCad (≈1.6 cM). Evaluation of the RL6071/Peace DH population and a second DH population, AC Karma/87E03-S2B1, in Kenya showed that the combination of SrCad and leaf rust resistance gene Lr34 provided a high level of resistance to Ug99-type races in the field, whereas in the absence of Lr34 SrCad conferred moderate resistance. A survey confirmed that SrCad is the basis for all of the seedling resistance to Ug99 in Canadian wheat cultivars. While further study is needed to determine the relationship between SrCad and other Sr genes on chromosome 6DS, SrCad represents a valuable genetic resource for producing stem rust resistant wheat cultivars.  相似文献   

10.
The timing and expression of resistance to four isolates of Plasmodiophora brassicae, collected from research sites where pathotypes 2, 3, 5 and 6 (Williams' system) had been dominant when characterised in 2006, were assessed in four new commercial cultivars of canola (Brassica napus) with resistance to clubroot. Each of the resistant cultivars was highly resistant to all four of the isolates, and there was no difference in their response to infection. Root hair infection occurred at high levels, but pathogen development occurred more slowly than in a susceptible cultivar (control). Secondary infection and development in cortical cells was severely inhibited in each of the resistant cultivars; only a few bi‐nucleated plasmodia were observed at 12 days after inoculation (DAI), and plasmodia were rarely observed at 18 and 24 DAI. In contrast, development in the susceptible cultivar had progressed to resting spores by 24 DAI. A dense ring of accumulated reactive oxygen species (ROS) was observed in the endodermis, pericycle and vascular cambium of non‐inoculated controls and inoculated plants of the resistant cultivars. However, the ROS ring disappeared rapidly in infected plants of the susceptible cultivar. Plasmodia invaded the stele of susceptible roots by preferentially colonising the xylem parenchyma cells. Expansion and enlargement of lignified xylem cells was observed by 35 DAI. The absence of any specific points of ROS accumulation or lignification of epidermal or cortical cells in the resistant cultivars indicates that a hypersensitive response is not the main mechanism of resistance in these lines. The uniform response of these resistant cultivars to the four isolates of P. brassicae indicates that the resistance in each cultivar may be conditioned by a gene(s) from a single source that confers broad resistance, because most sources of resistance to P. brassicae are pathotype specific.  相似文献   

11.
12.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

13.
Effect of short-term (2 h a day) and long-term (6 days) exposure to low temperature (5°C) on cold tolerance was investigated in two cultivars of potato (Solanum tuberosum L.): resistant (Sudarynya) and susceptible (Nevskii) to potato cyst nematode (Globodera rostochiensis Woll.). The extent of their infestation and changes in the expression of the genes of resistance to nematode (H1 and Gro1-4) were also analyzed. In both cultivars, exposure to low temperature enhanced cold resistance of potato plants. Enhancing cold resistance of cv. Sudarynya induced by a short-term exposure to chilling did not affect the extent of nematode infestation, whereas in susceptible cv. Nevskii, the extent of infestation decreased by almost three times. The level of expression of H1 gene in the leaves of the susceptible cultivar rose almost twofold both after short-term and long exposure to chilling, while in the resistant cultivar, gene expression increased only after a short-term effect of cold. The level of Gro1-4 gene expression increased after both temperature treatments only in the resistant cv. Sudarynya. Thus, the expression of genes for potato resistance to nematode infestation became more active in the susceptible cultivar as regards the gene H1 and in the resistant cultivar, regarding the gene Gro1-4. In the nematode-susceptible cv. Nevskii, the level of infestation decreased and cold resistance increased, apparently indicating cross adaptation to two factors of different nature.  相似文献   

14.
Powdery mildew significantly affects grain yield and end-use quality of winter wheat in the southern Great Plains. Employing resistance resources in locally adapted cultivars is the most effective means to control powdery mildew. Two types of powdery mildew resistance exist in wheat cultivars, i.e., qualitative and quantitative. Qualitative resistance is controlled by major genes, is race-specific, is not durable, and is effective in seedlings and in adult plants. Quantitative resistance is controlled by minor genes, is non-race-specific, is durable, and is predominantly effective in adult plants. In this study, we found that the segregation of powdery mildew resistance in a population of recombinant inbred lines developed from a cross between the susceptible cultivar Jagger and the resistant cultivar 2174 was controlled by a major QTL on the short arm of chromosome 1A and modified by four minor QTLs on chromosomes 1B, 3B, 4A, and 6D. The major QTL was mapped to the genomic region where the Pm3 gene resides. Using specific PCR markers for seven Pm3 alleles, 2174 was found to carry the Pm3a allele. Pm3a explained 61% of the total phenotypic variation in disease reaction observed among seedlings inoculated in the greenhouse and adult plants grown in the field and subjected to natural disease pressure. The resistant Pm3a allele was present among 4 of 31 cultivars currently being produced in the southern Great Plains. The genetic effects of several minor loci varied with different developmental stages and environments. Molecular markers associated with these genetic loci would facilitate incorporating genetic resistance to powdery mildew into improved winter wheat cultivars.  相似文献   

15.
Eighteen melon cultivars were screened for resistance to Monosporascus cannonballus under greenhouse conditions. The melon cultivars were grown in pasteurized sand, which had been inoculated with a high level (60 CFUs/g of soil) of M. cannonballus mycelium from culture. Cultivars Nabijani, Sfidak khatdar, Sfidak bekhat, Ghandak, Mollamosai, Chappat, Hajmashallahi and Shadgan were moderately resistant to M. cannonballus but all other melon cultivars were moderately to highly susceptible (HS) to this pathogen. A second screening was performed for resistance to M. cannonballus under greenhouse conditions. In the second screening, cultivars Nabijani, Sfidak khatdar, Sfidak bekhat, Ghandak, Mollamosai, Chappat, Hajmashallahi and Shadgan were moderately resistant to M. cannonballus. To examine the melon resistance mechanism against M. cannonballus, the activities of total phenol, total protein and peroxidase in two melon cultivars Nabijani (as resistant) and Khaghani (as susceptible) were determined at 0, 24, 48 and 72 h after inoculation. Inoculated resistant cultivar roots had always higher content of total phenol, total protein and peroxidase than the corresponding inoculated susceptible cultivar roots. The results indicated that there was a relationship between resistance in Nabijani and accumulation of total phenol, total protein and peroxidase.  相似文献   

16.
Fusarium head blight (FHB) of wheat is caused by Fusarium graminearum which produces many secondary metabolites including the trichothecene mycotoxins deoxynivalenol (vomitoxin) and 3-acetyldeoxynivalenol. Coleoptile tissue segements from 14 spring wheat cultivars were exposed to the F. graminearum metabolites deoxynivalenol, 3-acetyldeoxynivalenol, butenolide (all known mycotoxins), sambucinol, culmorin and dihydroxycalonectrin in a bioassay. The tissue of most cultivars was inhibited, at a concentration of 10?6M by the trichothecenes tested and up to 10?3M for the other compounds. Deoxynivalenol and 3-acetyldeoxynivalenol, which affect protein synthesis at the ribosome, are therefore potent phytotoxins in addition to being mycotoxins. The resistance or susceptibility of each cultivar to FHB was established in a field experiment. A comparison of the two sets of data indicated that resistant cultivars could tolerate much higher concentrations of the metabolites tested than susceptible cultivars. Some resistant material can tolerate 10 to 1000 times the concentration of the trichothecenes, compared with susceptible cultivars, with no effect on growth. The data suggest that it may be possible to screen germplasm rapidly for FHB resistance in vitro and a new type of resistance in wheat to this disease is proposed based on the apparent insensitivity to trichothecenes by resistant cultivars, additional to the three types of resistance described in the literature.  相似文献   

17.
Inheritance of resistance to bacterial speck of tomato was determined by analysing F1 F2 and backcross progenies of crosses involving a susceptible (VF-198) and a resistant cultivar (Rehovot-13). The results fit the hypothesis that resistance is controlled by a single dominant gene in interaction with minor genes. Cultivar susceptibility to Pseudomonas syringae pv. tomato was tested under greenhouse conditions under high inoculum pressure using infested tomato seeds together with infested soils and spray-inoculated wounded plants. Of 21 species, cultivars and lines, Rehovot-13, Ontario 7710 and Lycopersiconpimpinellifolium P.I. 126927 were found to be resistant to the pathogen. VF-198 and Tropic-VF were the most susceptible. Extra Marmande, Saladette, Acc.339944–3 and the wild type Lycopersicon esculentum var. cerasiforme were moderately resistant.  相似文献   

18.
Glasshouse assessments of resistance to S. avenae in 29 entries of wheat and two of rye were made by releasing half-grown aphids on randomised plants at the stem extension phase of growth. Wheat cvs Kador, Amigo, Highbury and Lutescens 1377 were resistant and cvs Sentry and Talavera de Bellevue partially resistant. Cv. Klein Acero, a breeding line TB68/6/10 and Lerma Rojo selections 197 to 200 were highly susceptible to S. avenae although the latter are moderately resistant to greenbug (Schizaphis graminum) (Starks & Merkle, 1977). The rye cultivars were susceptible to 5. avenae and no cultivar was found to be resistant to Metopolophium dirhodum. Clonal stocks of S. avenae, differing in colour, varied in their ability to form large populations on susceptible cultivars, and hence in their differentiation of susceptible from resistant wheat. No clone was detected with specific ability to attack the resistant cvs Kador and Amigo.  相似文献   

19.
Inheritance of partial resistance to powdery mildew in spring wheat   总被引:7,自引:0,他引:7  
Summary Four spring wheat (Triticum aestivum L.) cultivars exhibiting partial resistance to powdery mildew induced by Erysiphe graminis f.sp. tritici were crossed to a common susceptible cultivar to study the inheritance of resistance. The genetic parameters contributing to resistance were estimated by generation means analyses. Additive gene action was the most important genetic component of variation among generation means in all four crosses. Additive by additive effects were significant in one cross and both additive by additive and additive by dominance effects were significant in another. Dominance effects were not significant. The F2/F3 correlations in three crosses ranged from 0.27 to 0.43. Three additional crosses among resistant cultivars were employed to study the effectiveness of selection in improving resistance. By selecting the most resistant plants from the F2 and evaluating the progenies in the F4, increases in resistance ranging from 21% to 31% were obtained. In all crosses, there was transgressive segregation in both directions indicating that the genes conferring resistance to these cultivars differ and exhibit additive effects.  相似文献   

20.
Common bunt, caused by Tilletia caries (DC.) Tul. &; C. Tul. and T. laevis J.G Kuhn, is an economically important disease of wheat (Triticum aestivum L.) worldwide. The resistance in the winter wheat cultivar ‘Blizzard’ is effective against known races of common bunt in western Canada. The incorporation of resistance from Blizzard into field-ready cultivars may be accelerated through the use of molecular markers. Using the maize pollen method, a doubled haploid population of 147 lines was developed from the F1 of the second backcross of Blizzard (resistant) by breeding line ‘8405-JC3C’ (susceptible). Doubled haploid lines were inoculated at seeding with race T19 or T19 and L16 and disease reaction was examined under controlled conditions in 1999 and natural conditions in 2002, and 2003. Resistant:susceptible-doubled haploid lines segregated in a 1:1 ratio for bunt reaction, indicating single major gene segregation. Microsatellite primers polymorphic on the parents were screened on the population. Initial qualitative segregation analysis indicated that the wheat microsatellite markers Xgwm374, Xbarc128 and Xgwm264, located on wheat chromosome 1BS, were significantly linked to the resistance locus. Qualitative results were confirmed with quantitative trait locus analysis. The genetic distance, calculated with JoinMap®, between the bunt resistance locus and overlapping markers Xgwm374, Xgwm264 and Xbarc128 was 3.9 cM. The three markers were validated on doubled haploid populations BW337/P9502&;DAF1BB and Blizzard/P9514-AR17A3E evaluated for common bunt reaction in the growth chamber in 2007. These markers will be useful in selecting for the common bunt resistance from Blizzard and assist in identifying the resistance among potential new sources of resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号