首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human lymphocytes were treated with combined UVC radiation and X-rays or they were X-irradiated and incubated for 60–90 min in the presence of DNA-repair inhibitor ara-C. The X-ray induced chromosome exchange aberration yield was enhanced both by UVC and ara-C by approximately a factor of two in the linear (low dose) portion of the dose-response curve. The enhancement was small in the dose squared (high dose) portion where previous dose-fractionation experiments have shown that X-ray-induced lesions leading to aberrations exist for several hours. The yield of aberrations in lymphocytes incubated after irradiation in the presence of ara-C reaches a saturation level almost immediately after irradiation (5–15 min). These cytogenetic observations together with a previous finding (Holmberg and Strausmanis, 1983) give direct and indirect evidence that the enhanced aberration yield is due to short-lived DNA breaks formed immediately after X-irradiation.

Measurements on the repair kinetics of the DNA breaks induced by X-irradiation show that ara-C strongly impairs the repair of short-lived X-ray-induced DNA breaks. It was also observed that the DNA breaks generated after UVC irradiation occur almost immediately after irradiation and the level of these transient DNA breaks reaches saturation even for short incubation times. Thus, the repair of these breaks can compete with the repair of short-lived X-ray-induced DNA-breaks in combined irradiation with UVC and X-rays.

The experimental results can be explained on the assumption that X-ray-induced aberrations originate from exchange complexes formed in interactions between both short-lived DNA breaks. The short-lived DNA breaks give rise to exchange complexes mainly within single ionization tracks where the DNA breaks are close together. The time between irradiation and exchange complex formation is of the order of 5–15 min within such a track, and short-lived breaks might be repaired before complexes have been formed. If the DNA repair of these breaks is delayed by UVC or ara-C treatment this results in a higher probability of exchange-complex formation. In contrast, interactions between breaks in different tracks originate from long-lived DNA breaks and the probability for complex formation from these breaks is not markedly affected by UVC or ara-C.  相似文献   


2.
Dicentric chromosome aberration yields have been measured after single-exposure and split-dose irradiations of human lymphocytes with 150 kV X-rays. Various temperature programmes between 4 and 37 degrees C were applied before, during and after irradiations and in the radiation-free interval. It was found that chromatin lesion repair was completely suppressed at 21 degrees C and below, whereas lesion formation is reduced only below 17 degrees C. The interaction between repairable lesions which leads to exchange-type aberrations is also suppressed by low temperatures. Hypothermic suppression of chromatin lesion repair and interaction is fully reversible at least up to 12 h of maintenance of the 'stored' state of these lesions.  相似文献   

3.
M Holmberg 《Mutation research》1990,232(2):267-272
Quiescent human lymphocytes were X-irradiated and allowed to repair for various times at 37 degrees C before the cells were challenged with the DNA-repair inhibitor ara-C. The observed yield of chromosome exchange aberrations (dicentrics) was about twice the yield induced by X-rays alone, if ara-C was added immediately after irradiation. The yield as a function of the repair time between X-irradiation and ara-C treatment decreased with a half-life of 15-30 min and was almost down to the baseline yield for X-rays alone after 1 h. This shows that an exchange aberration can be formed from a short-lived DNA break. In contrast, previously published results from dose-split experiments demonstrate that the half-life of the interacting DNA breaks is of the order of several hours. A model is proposed which can account for the different estimates of the time course of the interactions involved in the process which leads to an exchange aberration.  相似文献   

4.
Using 1-β- -arabinofuranosylcytosine (AraC) which is an inhibitor of DNA-repair resynthesis, previous studies have shown that the frequency of chromosome-type aberrations is influenced by the rate of repair of araC-inhibitable DNA damage. The experiments described here are a further test of this hypothesis and also an attempt to determine if the different sensitivities of lymphocytes of different species to X-ray-induced aberrations are related to the rate of endonucleolytic incision during repair of DNA damage. Unstimulated lymphocytes from 4 species were exposed to an X-ray dose of 200 rad, and then incubated with araC for 0, 1, 2, 3 or 4 h. The aberration frequencies increased in all species up to 3–4 h. It was also clear that the rate of increase was different between species and was approximately proportional to the ratios of X-ray-induced aberrations observed in the absence of araC. For example, human lymphocytes are approximately twice as sensitive as rabbit lymphocytes to the induction of aberrations by X-rays and the rate of increase of aberrations in the presence of araC was about twice as great in human as rabbit lymphocytes. In addition, using 50, 100, 200 or 300 rad of X-rays and treating human lymphocytes for 0, 1, 2 or 3 h in araC post-irradiation, we have shown that the rate of increase in aberrations is proportional to the amount of araC-inhibitable DNA damage; with a limiting dose at about 50 rad. These results appear to provide a basis for interpreting differences in sensitivities to aberration induction among mammalian species.  相似文献   

5.
In barley ( Hordeum vulgare L.) and grass pea ( Lathyrus sativus L.), caffeine, an inhibitor of DNA repair activity, and Na2ethylenediaminetetraacetate, an inhibitor of DNA-endonucleases, sharply decreased the excision repair of pyrimidine dimers induced in DNA by ultraviolet irradiation. An inhibitor of RNases, diethylpyro-carbonate, did not inhibit the process of excision, and in one experiment it even enhanced excision. Caffeine markedly increased the frequency of mutations and inhibited the growth of seedlings after UV-radiation. Such enhancement was greater with the higher UV fluence. Results of chemical inhibition were further confirmed by the suppression of repair by low temperatures: the frequency of chromatid aberrations induced with propyl methanesulfonate was increased more than 3 times and chromatid aberrations 1.5 times. Evidence for participation of repair enzymes in the modification of mutation processes was also obtained in the experiments which combined γ-irradiation and treatment with propyl methanesulfonate. Conditions favouring repair activity caused a drastic reduction in the frequency of aberrations, whereas with conditions preventing enzyme function the mutation frequency increased. In one of the experiments of this series we were able to demonstrate, with identical mutagenic treatment, that by changing post-mutagen conditions (wetting and drying of seeds, storage after mutagenic treatment) it was possible to alter the mutation frequency and to obtain below-additive, additive and synergistic mutational response.  相似文献   

6.
Human lymphocytes in the quiescent stage were UVC-irradiated and then incubated for 90 min in the presence of the DNA-repair inhibitor ara-C. The cells were then cultured and analyzed for chromosome aberrations. A single treatment with UVC or ara-C gives rise to a very low yield of dicentrics, whereas the combined treatment can induce a high frequency of these chromosome-type aberrations. The yield in the combined treatment is approximately proportional to the square of the UVC fluence in the range 1-3 J/m2. In addition, the experiments demonstrate that synergistic effects arise when cells are treated with UVC + ara-C and then exposed to X-rays. The results can be explained on the assumption that the UVC + ara-C treatment induces DNA double-strand breaks which, to the first approximation, are randomly distributed over the chromosomes. These breaks are able to interact with each other as well as with X-ray-induced DNA double-strand breaks to form a chromosome-type exchange aberration.  相似文献   

7.
This paper provides a theoretical analysis of pecularities of both the frequency and intrachromosomal distribution of chromatid aberrations observed in the first post-treatment mitosis and induced by clastogenic agents showing delayed effects (S-phase dependent clastogens), as functions of recovery time. The theoretical deductions are based on the following facts: (1) DNA is the target of clastogen action. Lesions induced by clastogens showing delayed effects (e.g. mono- and polyfunctional alkylating agents, ultraviolet light) give rise to aberrations only after interference with the process(es) associated with DNA replication. (2) DNA replication occurs asynchronously with respect to the local involvement in replication of different chromatin regions and according to a highly ordered pattern. (3) Lesions may be removed from DNA (or otherwise modified) by repair processes prior to replication. The removal of lesions from DNA is a time-dependent function.Several possibilities are analysed (i.e. random or non-random distribution of DNA lesions, uniform or locally differing capacities of pre-replicative repair of lesions, uniform or locally differing rates of DNA synthesis) and the frequencies and distribution patterns of chromosome structural changes, as expressed in form of aberration yield-time curves, have been discussed. The theory presented in this paper offers a simple interpretation both of variations of aberration frequency and aberration distribution in dependence on the cell's position within the cell cycle during induction of lesions.It is shown that the intrachromosomal aberration distribution is non-random even if random distribution of lesions and uniform repair rates between chromosome regions replicating at different time periods during S are assumed. Non-random aberration distributions are a necessary consequence of at least two factors: (a) the temporal replication pattern, and (b) the repair activities acting prior to replication. Random distribution of aberrations is only to be expected for the most simplified situation (random distribution of lesions along the DNA and equal transformation probabilities of a given kind of lesion into aberrations) when no loss of lesions prior to replication takes place (no pre-replicative repair) and cells treated with the mutagen during G1 are analysed.  相似文献   

8.
The inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide (3AB) has been reported to have very different effects on X-ray-induced chromosome aberrations in G0 human lymphocytes. One group of investigators observed a 2-3-fold increase in the yield of rings, dicentrics and chromosome breaks after X-irradiation and 3AB treatment, whereas another group found that 3AB had no effect on X-ray-induced chromosome aberrations. To resolve this discrepancy, we repeated the experiments as described by both groups and found no effect of 3 mM or 5 mM 3AB on the frequency of chromosome aberrations induced by either 1 Gy or 2 Gy of X-rays. Furthermore, we found no effect of 3AB on X-ray-induced aberration yields in C-banded prematurely condensed chromosome preparations from unstimulated human lymphocytes. These results indicate that poly(ADP-ribose) polymerase is not involved in the repair of cytogenetic damage in G0 human lymphocytes.  相似文献   

9.
Summary Human peripheral blood was treated with ultrasound either before or after irradiation, and chromosome aberrations in lymphocytes of peripheral blood cultures compared to those resulting from an equivalent dose of irradiation given alone.When peripheral blood is sonicated at a high intensity (3 W/cm2) for 10 min after irradiation, there is an increase in aberration frequency as compared to control samples receiving the equivalent radiation dose alone. However, should the blood be sonicated at the same frequency and for the same time period before radiation there is no significant increase in total chromosome aberrations over the irradiated controls. On the contrary a significant decreases occurs in certain classes of aberration.When sonification with a lower intensity (20 mW/cm2) was used in combination with irradiation the reverse effect was noted. Ultrasound administered for 10 min after radiation caused no significant increase in aberrations. On the contrary increasing the period of sonification to one hour resulted in a lowering of all types of aberration, significant in the case of dicentrics and total chromosome aberrations, when compared to irradiation alone. Reversing the order of treatment again resulted in the opposite effect to that achieved with comparable experiments at high intensities of sonification. Ultrasound before radiation did not produce lower breakage rates. Instead, when the period of sonification was increased to one hour, the number of aberrant cells, fragments, and total aberrations rose significantly over controls.It is suggested that sonification produces chemical changes affecting cellular repair systems, which when combined with ionising radiation, results in an increased or decreased repair effect depending on the dose, duration, and order of treatment.Dedicated to Prof. Dr. Felix Mainx on the occasion of his 80th birthday  相似文献   

10.
We have studied two X-ray-sensitive mutants xrs 5 and xrs 6 (derived from the CHO-K1 cell line), known to be defective in repair of double-strand breaks, for cell killing and frequency of the chromosomal aberrations induced by X-irradiation. The survival experiments showed that mutants are very sensitive to X-rays, the D0, for the wild-type CHO-K1 was 6-fold higher than D0 value for the mutants. The modal number of chromosomes (2 n = 23) and the frequency of spontaneously occurring chromosomal aberrations were similar in all 3 cell lines. X-Irradiation of synchronized mutant cells in G1-phase significantly induced both chromosome- and chromatid-type of aberrations. The frequency of aberrations in xrs mutants was 12-fold more than in the wild-type CHO-K1 cells. X-Irradiation of G2-phase cells also yielded higher frequency of aberrations in the mutants, namely 7-8-fold in xrs 5 and about 3.5-fold in xrs 6 compared to the wild-type CHO-K1 cells. There was a good correlation between relative inability to repair of DNA double-strand breaks and induction of aberrations. The effect of 3-aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) synthetase on the frequency of X-ray-induced chromosomal aberrations in these 3 cell lines was also studied. 3AB potentiated the frequency of aberrations in G1 and G2 in all the cell types. In the mutants, 3AB had a potentiating effect on the frequency of X-ray-induced chromosomal aberrations only at low doses. X-Ray-induced G2 arrest and its release by caffeine was studied by cytofluorometric methods. The relative speed with which irradiated S-G2 cells progressed into mitosis in the presence of caffeine was CHO-K1 greater than xrs 5 greater than xrs 6. Caffeine could counteract G2 delay induced by X-rays in CHO-K1 and xrs 5 but not in xrs 6. Large differences in potentiation by caffeine were observed among these cells subjected to X-rays and caffeine post-treatment for different durations. These responses and possible reasons for the increased radiosensitivity of xrs mutants are discussed and compared to ataxia telangiectasia (A-T) cells and a radiosensitive mutant mouse lymphoma cell line.  相似文献   

11.
Chromosome damage and the spectrum of aberrations induced by low doses of γ-irradiation, X-rays and accelerated carbon ions (195 MeV/u, LET 16.6 keV/μm) in peripheral blood lymphocytes of four donors were studied. G0-lymphocytes were exposed to 1–100 cGy, stimulated by PHA, and analyzed for chromosome aberrations at 48 h post-irradiation by the metaphase method. A complex nonlinear dose–effect dependence was observed over the range of 1 to 50 cGy. At 1–7 cGy, the cells showed the highest radiosensitivity per unit dose (hypersensitivity, HRS), which was mainly due to chromatid-type aberration. According to the classical theory of aberration formation, chromatid-type aberrations should not be induced by irradiation of unstimulated lymphocytes. With increasing dose, the frequency of aberrations decreased significantly, and in some cases it even reached the control level. At above 50 cGy the dose–effect curves became linear. In this dose range, the frequency of chromatid aberrations remained at a low constant level, while the chromosome-type aberrations increased linearly with dose. The high yield of chromatid-type aberrations observed in our experiments at low doses confirms the idea that the molecular mechanisms which underlie the HRS phenotype may differ from the classical mechanisms of radiation-induced aberration formation. The data presented, as well as recent literature data on bystander effects and genetic instability expressed as chromatid-type aberrations on a chromosomal level, are discussed with respect to possible common mechanisms underlying all low-dose phenomena.  相似文献   

12.
Recovery from X-ray-induced damage in class B oocytes of Drosophila melanogaster was studied by the dose-fractionation technique. A total dose of 500 R was delivered either as a single exposure or as two fractions of 2000 R and 3000 R separated by increasing time intervals. The use of attached-X females made it possible to study simultaneously the induction of dominant lethals and of chromosome aberrations (detachments of the attached-X chromosome). The same repair kinetics were observed for sublethal damage and for the lesions leading to detachments. The time-response curves are of similar shape: a plateau is reached within 20 to 30 min and half of the repairable damage disappears in 5 to 7 min. It is concluded that the same type of X-ray-induced primary lesion in chromosomes is responsible for the induction of detachments and for dominant lethals. As primary lesions actual chromosome breaks or lesions leading to breaks and chromosome rearrangements are assumed.  相似文献   

13.
Experimental evidence is presented for the involvement of DNA double-strand breaks in the formation of radiation-induced chromosomal aberrations. When X-irradiated cells were post-treated with single-strand specific Neurospora crassa endonuclease (NE), the frequencies of all classes of aberration increased by about a factor 2. Under these conditions, the frequencies of DNA double-strand breaks induced by X-rays (as determined by neutral sucrose-gradient centrifugation), also increased by a factor of 2. The frequency of chromosomal aberrations induced by fast neutrons (which predominantly induce DNA double-strand breaks) was not influenced by post-treatment with NE. Inhibition of poly(ADP-ribose) polymerase, an enzyme that uses DNA with double-strand breaks as an optimal template, by 3-aminobenzamide also increased the frequencies of X-ray-induced chromosomal aberrations, which supports the idea that DNA double-strand breaks are important lesions for the production of chromosomal aberrations induced by ionizing radiation.  相似文献   

14.
Various types of DNA damage, induced by endo- and exogenous genotoxic impacts, may become processed into structural chromosome changes such as sister chromatid exchanges (SCEs) and chromosomal aberrations. Chromosomal aberrations occur preferentially within heterochromatic regions composed mainly of repetitive sequences. Most of the preclastogenic damage is correctly repaired by different repair mechanisms. For instance, after N-methyl-N-nitrosourea treatment one SCE is formed per >40,000 and one chromatid-type aberration per approximately 25 million primarily induced O6-methylguanine residues in Vicia faba. Double-strand breaks (DSBs) apparently represent the critical lesions for the generation of chromosome structural changes by erroneous reciprocal recombination repair. Usually two DSBs have to interact in cis or trans to form a chromosomal aberration. Indirect evidence is at hand for plants indicating that chromatid-type aberrations mediated by S phase-dependent mutagens are generated by post-replication (mis)repair of DSBs resulting from (rare) interference of repair and replication processes at the sites of lesions, mainly within repetitive sequences of heterochromatic regions. The proportion of DSBs yielding structural changes via misrepair has still to be established when DSBs, induced at predetermined positions, can be quantified and related to the number of SCEs and chromosomal aberrations that appear at these loci after DSB induction. Recording the degree of association of homologous chromosome territories (by chromosome painting) and of punctual homologous pairing frequency along these territories during and after mutagen treatment of wild-type versus hyperrecombination mutants of Arabidopsis thaliana, it will be elucidated as to what extent the interphase arrangement of chromosome territories becomes modified by critical lesions and contributes to homologous reciprocal recombination. This paper reviews the state of the art with respect to DNA damage processing in the course of aberration formation and the interphase arrangement of homologous chromosome territories as a structural prerequisite for homologous rearrangements in plants.  相似文献   

15.
The cell killing and induction of sister-chromatid exchanges (SCEs) by X-rays and short-wave ultraviolet (UV) irradiation in combination with inhibitors of DNA repair, 3-aminobenzamide (3AB), cytosine arabinoside (ara-C) or aphidicolin (APC) were studied in wild-type CHO-K1 and two X-ray-sensitive mutants, xrs 5 and xrs 6 cells. The spontaneous frequency of SCEs was similar in the mutants and the wild-type CHO-K1 cells (8.4-10.3 SCEs/cell). Though X-rays are known to be poor inducers of SCEs, a dose-dependent increase in the frequency of SCEs in xrs 6 cells (doubling at 150 rad) was found in comparison to a small increase in xrs 5 and no increase in wild-type CHO-K1 cells. 3AB, an inhibitor of poly(ADP-ribose) synthetase increased the spontaneous frequency of SCEs in all the cell types. 3AB did not potentiate the X-ray-induced frequency of SCEs in any of the cell lines. Ara-C, an inhibitor of DNA polymerase alpha, increased the frequency of SCEs in all the cell lines. In combined treatment with X-rays, ara-C had no synergistic effect in xrs 5 and xrs 6 cells, but the frequency of SCEs increased in X-irradiated wild-type CHO-K1 cells post-treated with ara-C. For the induced frequency of SCEs, CHO-K1 cells treated with X-rays plus ara-C behaved like xrs 6 cells treated with X-rays alone, suggesting a possible defect in DNA base damage repair in xrs 6 cells, in addition to the known defective repair of DNA double-strand breaks (DSBs). Survival experiments revealed higher sensitivity of xrs 5 and xrs 6 mutant cells to the cell killing effect of X-rays in S-phase when compared to wild-type CHO-K1 cells. The mutants responded with lesser sensitivity to cell killing effect of ara-C and APC than CHO-K1 cells, the relative sensitivity to ara-C or APC being CHO-K1 greater than xrs 5 greater than xrs 6 cells. When X-irradiation was coupled with ara-C, the results obtained for survival were similar to those of the SCE test, i.e., unlike wild-type CHO-K1, no synergistic effect was observed in xrs 5 or xrs 6 cells. After UV-irradiation, the frequency of SCEs increased similarly in wild-type CHO-K1 and xrs 6 cells, but xrs 5 cells responded with lower frequency of SCEs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In human lymphocytes low doses of X-rays can decrease the number of chromatid deletions induced by subsequent high doses of sparsely ionizing X-rays. Because of the concern with the carcinogenic effects of low doses of -particles from radon in homes, experiments were carried out to see if low doses of X-rays could also decrease the yield of chromosomal aberrations induced by subsequent exposure to radon. Human peripheral blood lymphocytes were irradiated with low doses of X-rays (2 cGy) at 48 h of culture, exposed to radon at 72 h of culture, and analyzed for the presence of chromatid aberrations at subsequent intervals. The frequency of chromatid aberrations induced by radon alone increased with time after exposure, indicating exaggerated differences in the stage sensitivity of cell cycle stages to high-LET radiation. Furthermore, the numbers of aberrations per cell did not follow a Poisson distribution but were over dispersed, as might be expected since high-LET radiations have a high relative biological effectiveness compared with low-LET radiations. Nevertheless, lymphocytes exposed to 2 cGy of X-rays before radon exposure contained approximately one-half the number of chromatid deletions compared with lymphocytes treated with radon alone and analzed at the same time. Thus, the putative chromosomal repair mechanism induced by low doses of sparsely ionizing radiation is also effective in reducing chromosomal aberrations induced by radon, which hitherto had been thought to be relatively independent of repair processes.  相似文献   

17.
Mary L. Alexander 《Genetics》1975,81(3):493-500
The mutation rate was determined for mature sperm at eight specific gene loci on the third chromosome of Drosophila melanogaster using the low ion density radiations of 22 Mev betatron X-rays. A dose of 3000 rads of betatron X-rays produced a mutation rate of 4.36 x 10-8 per rad/locus. Among the mutations observed, 66% were recessive lethals and 34% viable when homozygous. Only one of the 24 viable mutations was associated with a chromosome aberration. Among the 47 recessive lethals, no two-break aberrations were detected in 48.9% of the lethals, deletions were associated with 42.2%, inversions with 6.7% and translocations with 2.2%.—When these genetic results are compared to those for 250 KV X-rays, the mutation rate for betatron treatments was slightly lower (.76), the recessive lethal rate among induced mutations was higher, and the chromosome aberrations among lethal mutations were slightly lower than with 250 KV X-rays. Although the two types of irradiations differ by an ion density of approximately ten, the amount and types of inheritable genetic damage induced by the two radiations in mature sperm were not significantly different.  相似文献   

18.
The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories?? surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the ??surface mechanism?? of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.  相似文献   

19.
Cigarette smoking is generally believed to be responsible for a substantial number of human health problems. However, the causal relationship between smoking, the induction of biological effects and the extent of health problems among smokers have not been fully documented. Using the recently developed lymphocyte micronucleus (MN) assay, we have evaluated the chromosome aberration frequencies in 67 cigarette smokers and 59 matched non-smoking control subjects. We found that the mean MN frequency (per 100 cells) in the smokers was slightly higher than that found in the non-smokers (0.71 +/- 0.23 and 0.58 +/- 0.05 respectively; p less than 0.08). Factors which contribute to the expression of chromosome aberrations were also investigated. A significant age-dependent increase in MN frequencies was observed in both groups (p less than 0.05). Linear regression analysis showed that the age-dependent effects among smokers (r = 0.54; p less than 0.02) was further enhanced by cigarette consumption (r = 0.62; p less than 0.005). Consumption of low potency 'one-a-day' type multivitamins had no effect on MN frequencies in either sex of non-smokers and in the 1 male smoker who took multivitamins but vitamin intake consistently reduced the MN frequencies among female smokers. Using a challenge assay, fidelity of DNA repair was evaluated. Lymphocytes from both smokers and non-smokers were irradiated with single doses of 0 or 100 cGy of X-rays or with double doses of 100 cGy of X-rays each separated by 15 or 60 min (100/15 or 100/60). Chromosome translocation frequencies were consistently higher after irradiation in lymphocytes from smokers than in those from non-smokers. Statistically significant differences were detected when the cells were irradiated with the double doses of 100 cGy X-rays each separated by 60 min (p less than 0.05). These data suggest that lymphocytes from smokers made more mistakes in the repair of DNA damage than cells from non-smokers. Our studies provide new insights into the genotoxic effects of cigarette smoke and new information which may be useful for understanding the mechanisms for induction of health problems from smoking.  相似文献   

20.
X-rays and deficiencies in DNA repair had a synergistic effect on genetic damage associated with P-element mobility in Drosophila melanogaster. These interactions, using sterility and fecundity as endpoints, were tested in dysgenic males deficient in either excision or post-replication DNA repair. Three sublines of the Harwich P strain were used for the construction of hybrid males. These sublines differ in P-induction ability based on gonadal dysgenesis sterility (GD) and snw mutability tests, in P-element insertion site pattern, and in the types of defective P-elements, such as KP elements, they possess. A lower degree of gonadal dysgenesis was correlated with the presence of KP elements. GD sterility and snw mutability were not always correlated. Dysgenic hybrids originating from the standard reference subline, Harwich(white), were much more sensitive to the post-replication repair than the excision repair defect. In contrast, sterility of hybrids derived from the weak subline was least affected by, and that of hybrids of the strongest subline was most affected by either DNA repair deficiency. The exacerbation by X-rays of the effects of DNA repair deficiencies on genetic damage indicates that both repair mechanisms are required for processing DNA lesions induced by the combined effect of P activity and ionizing radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号