首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In the presence of optimal concentrations of Mg2+, spermine and spermidine were found to stimulate rabbit globin mRNA-directed cDNA synthesis by Rauscher murine leukemia virus (R-MuLV) DNA polymerase. Stimulation of DNA synthesis did not occur with the polyamines putrescine or cadaverine, nor could exogenously provided salt or ammonium ions duplicate the stimulation. Analysis of the mechanism of stimulation showed that inclusion of spermine in reaction mixtures a) increased Vmax and decreased apparent Km with respect to the globin mRNA-oligo(dT) tem?late-primer complex, and b) decreased the quantity of oligo (dT) required for optimal rates of cDNA synthesis on a fixed quantity of mRNA template. Genomic 70S RNA-directed cDNA synthesis was also stimulated by spermine addition to reaction mixtures, but only at supra-optimal RNA concentrations. Our results suggest that stimulation of R-MuLV DNA polymerase activity by polyamines is primarily due to stabilization of the enzyme-templateprimer initiation complex resulting in increased efficiency of initiation of cDNA synthesis.  相似文献   

4.
5.
RNA-dependent DNA polymerase and gs-antigen were purified simultaneously from Rauscher leukemia virus by sequential column chromatography on phosphocellulose. The partially purified RNA-dependent DNA polymerase has a molecular weight of 70,000 and is free of cellular DNA polymerase, deoxynucleotidyl terminal transferase, RNase and DNase. The partially purified RNA-dependent DNA polymerase can efficiently copy oligo dT·poly rA and oligo dG·poly rC. The purified gs-antigen shows a single band on SDS-polyacrylamide gel with a molecular weight of 30,000. It is active immunologically and possesses both group and interspecies activity.  相似文献   

6.
Using electron microscopy, a closed circular form of DNA (4.3 mum in contour length) was detected in the nucleus of mouse embryo fibroblasts 2.5 h after infection by Rauscher murine leukemia virus. These circles were distinguishable from mitochondrial DNA by various criteria, including size, absence of secondary features, and resistance to EcoRI endonuclease.  相似文献   

7.
DNA polymerase was purified to apparent electrophoretic homogeneity from virions of spleen necrosis virus (SNV). (SNV is a member of the reticuloendotheliosis group of avian ribodeoxyviruses). The SNV DNA polymerase appears to consist of a single polypeptide with a molecular weight of 68,000. The SNV DNA polymerase has a preference for Mn2+ for DNA synthesis with an RNA template and Mg2+ for DNA synthesis with a deoxyribohomopolymer template. At the optimum concentrations of divalent cation, the relative rates of DNA synthesis by SNV DNA polymerase with different template.primers were similar to the relative rates of DNA synthesis by an avian leukosis virus DNA polymerase, with the exception of a lower relative rate of DNA synthesis by SNV DNA polymerase with SNV RNA. However, in contrast to DNA synthesized by the avian leukosis virus DNA polymerase with a SNV RNA template, DNA synthesized by SNV DNA polymerase with an SNV RNA template did not hybridize to the SNV RNA. SNV DNA polymerase has RNase H activity which is antigenically distinct from the RNase H activity of avian leukosis-sarcoma virus DNA polymerase.  相似文献   

8.
Highly purified preparations of RNA-directed DNA polymerase from avian myeloblastosis virus (AMV) contain a Mn2+-activated endonuclease activity capable of nicking supercoiled DNA. This endonuclease activity co-sediments in glycerol gradients with the alphabeta form of AMV DNA polymerase, and co-chromatographs with DNA polymerase activity on DEAE-cellulose, phosphocellulose, and heparin-Sepharose. It is also present in AMV alphabeta-DNA polymerase purified by electrophoresis through nondenaturing polyacrylamide gels and subsequently chromatographed on poly(C)-agarose. alphabeta-associated endonuclease is co-immunoprecipitated with DNA polymerase activity by antiserum directed against alphabeta holoenzyme. The alpha form of AMV DNA polymerase lacks this activity. In its enzymatic properties, alphabeta-associated endonuclease resembles the endodeoxyribonuclease activity associated with the AMV p32 protein, which has been shown to be structurally related to the beta (but not the alpha) subunit of AMV DNA polymerase.  相似文献   

9.
An RNA directed DNA polymerase was purified over 2500 fold from gibbon ape leukemia virus by successive column chromatography on Sephadex G100, DEAE cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a Mn2+ optimum of 0.8 mM, and KCl optimum of 80 mM. The purified enzyme transcribes heteropolymeric regions of viral 60-70 S RNA isolated from avian myeloblastosis virus, Rauscher murine leukemia virus and simian sarcoma virus and it is inhibited by antiserum prepared against either gibbon ape leukemia virus or simian sarcoma virus DNA polymerases.  相似文献   

10.
Some membrane characteristics of normal and Rauscher leukemia virus (RLV)-infected mouse red blood cells (RBC) were compared, both with regard to total populations and young and old groups of cells. Osmotic fragility, density distribution of cells and agglutinability by poly- -lysine (pLys), concanavalin A (ConA), phytohemagglutinin (PHA) and soybean agglutinin (SBA), were examined. RBC from RLV-infected mice were agglutinated at a higher rate and to a higher degree than normal mice RBC by pLys and by the lectins PHA and ConA. These RBC were generally osmotically more resistant and contained a young cell population of unusually high specific gravity. Comparison of RBC from RLV-infected mice with old RBC from normal mice showed some common membrane characteristics. Similarly to old RBC, RBC from RLV-infected mice have a high specific gravity and high agglutinability by pLys. However, they differ in that the RBC from RLV-infected mice are osmotically more resistant and are agglutinated by ConA; they are also agglutinated at a higher rate by PHA.  相似文献   

11.
12.
Tryptophanyl-tRNA was specifically labeled at the 3' end with [3H]tryptophan and cleaved in half with RNase under denaturing conditions, and the 3' half was shown to hybridize exclusively at the 5' end of avian myeloblastosis virus RNA. The RNA-dependent DNA polymerase of avian myeloblastosis virus is capable of efficiently binding the 3' half of the primer molecule.  相似文献   

13.
The RNA-directed DNA polymerase of the primate type-D retrovirus Mason-Pfizer virus was purified using ion-exchange and affinity chromatography, and molecular sieving. The enzyme was shown to have a molecular weight of approx. 80 000 as determined by sedimentation analysis, molecular sieving and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified RNA-directed DNA polymerase retained its ability to use a heteropolymeric RNA as a template. The Mason-Pfizer virus RNA-directed DNA polymerase was also characterized as to its divalent cation preference for several synthetic primertemplates and for heteropolymeric RNA. Mg2+ was preferred as its divalent cation for all primer-templates except oligo(dG).poly(rC)m for which it prefers Mn2+. The Mason-Pfizer virus enzyme was also shown to have a pH optimum of 8-8.5 and a temperature optimum of 37-40 degrees C. The stability of the Mason-Pfizer virus RNA-directed DNA polymerase was shown to differ when measured using different primer-templates.  相似文献   

14.
15.
16.
17.
18.
Cells from a goose embryo were shown to release particle-associated RNA-directed DNA polymerase and RNase H activities that required the presence of Nonidet P-40 for detection. The particles were not infectious and did not have endogenous DNA synthesis. The goose particle DNA polymerase was related to the DNA polymerase of spleen necrosis virus with respect to size and was inhibited by immunoglobulin G to spleen necrosis virus DNA polymerase. However, goose cells producing DNA polymerase-containing particles did not contain reticuloendotheliosis virus-related nucleotide sequences in their DNA.  相似文献   

19.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

20.
Commercial-grade aurintricarboxylic acid (ATA) inhibits poly(A), poly(C) and viral RNA-directed DNA synthesis by detergent-disrupted virions of Moloney murine leukemia virus. Paper chromatography of crude ATA yields two active components, which appear to behave identically, and at least two inactive components. The concentration of ATA needed to inhibit polymerase activity is proportional to the concentration of viral protein. The inhibition is neither attributable to contaminating heavy metal ions in the ATA preparation nor to chelation by ATA of Mn2+ or Zn2+, the necessary co-factors. Inhibition of the polymerase reaction by ATA greatly increases the Km for the primer [oligo(T)/oligo(dG)], while it only slightly lowers the Vmax and does not affect the Km's for the template [poly(A)/poly(C)] or the substrate (TTP/dGTP). Thus, ATA seems to reduce specifically the affinity of the polymerase for the DNA primer molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号