首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is one of the most important pest insects in cotton fields in China. Female moths were captured by waterbasin traps with a synthetic female sex pheromone blend in cotton fields over three years. The blend contained (Z)‐11‐hexadecenal and (Z)‐9‐hexadecenal with a ratio of 97:3. Each pheromone dispenser was impregnated with 2.0 mg of pheromone blend and 0.2 mg of antioxidant dissolved with 0.1 mL of hexane, and there was a control dispenser with a similar amount of antioxidant and solvent only. Waterbasin traps were deployed in three configurations in the fields. ‘A’ was pheromone traps only, ‘B’ was both pheromone and control traps, ‘C’ was control traps only. (i) In four plots of ‘A’, the average weekly female catch was 1.5, and more females were captured by centrally located pheromone traps, (ii) In three plots of ‘Brsquo;, control traps also captured female as well as male moths, but average weekly female catches of control traps was significantly lower than that in pheromone‐baited traps. (iii) There were significant linear relationships between the average weekly female catch and the corresponding layer in pheromone‐baited traps in both ‘A’ and ‘B’ plots, and in quadratic equations in control in ‘B’ plots. (iv) With the increase of the interval of traps, average weekly female catches per trap increased but average weekly female catches per hectare decreased. (v) Among the female moths captured by pheromone traps, 88.3% were mated female moths which each containing 1.46 spermatophores, while in control traps 86.9% of the mated female moths had 0.90 spermatophores. There was a significant difference between the average numbers of spermatophores of mated females in pheromone traps and in controls.  相似文献   

2.
性信息素、黑光灯和杨树枝把在棉铃虫成虫监测中的作用   总被引:5,自引:0,他引:5  
1997年在南疆棉区 3个地点研究了性信息素、黑光灯和杨树枝把对棉铃虫成虫的诱捕效果。试验结果表明 ,性信息素笼罩诱捕器的诱蛾量分别是黑光灯和杨枝把的 9 5和 2 5 4倍 ,性信息素水盆诱捕器的诱蛾量是杨枝把的 1 4 4倍。经统计分析 ,以上倍数随发蛾量的增大有上升趋势 ,即在发蛾量大时性信息素的诱捕效果进一步提高。考虑到笼罩诱捕器的高效、稳定和简易 ,作者希望在我国尽快将其用于进行棉铃虫成虫的标准化监测。  相似文献   

3.
Coloured pan traps are frequently used to attract and catch insects, such as in the monitoring of populations of beneficial insects in classical or conservation biological control. They are also used in the evaluation of the recovery of insect populations after disturbance and in many other situations where an estimate of relative insect numbers is required. However, the fact that traps may be visible to the insects over a considerable distance can influence the interpretation of catch data. This difficulty may arise, for example, if traps along a transect can attract insects from some or all of the other transect positions. This study compared the effect of different coloured traps on attraction and catch of hoverflies. The hypothesis was that completely yellow traps would attract hoverflies from a distance, while traps that were green outside and yellow inside would catch fewer flies because only those from above or near the trap can see the yellow stimulus. A subsidiary hypothesis was that rose water would enhance hoverfly capture rates. For the two main hoverfly species captured, Melanostoma fasciatum (Macquart) and Melangyna novaezelandiae (Macquart), significantly more individuals were caught in completely yellow traps than in yellow and green or in completely green traps. Moreover, the addition of rose water increased the number of hoverflies caught significantly. It is suggested that if a measure of hoverfly numbers relating to a particular distance along a transect is required, consideration should be given to the ability of hoverflies to see yellow traps from a distance. The use of traps that are green outside would more accurately reflect the local abundance of hoverflies. If higher trap catches of hoverflies are needed for statistical purposes, rose water can enhance catches.  相似文献   

4.
We investigated the efficacy of insecticides combined with a plant volatile-based attractant for Helicoverpa armigera moths, under laboratory and field conditions. In the laboratory, 16 insecticides were assessed by the level of mortality and time to incapacitate and kill moths. The proboscis extension reflex technique was used for dosing moths. The pyrethroids, bifenthrin (only when synergised by the addition of piperonyl butoxide (PBO) but not without it) and cyfluthrin (with or without PBO), endosulfan, the carbamates methomyl and thiodicarb, and spinosad killed all moths tested at rates equivalent to, or less than, those which would be applied in cover sprays targeting larvae. The shortest time to moth incapacitation and death was observed with methomyl and thiodicarb. Spinosad produced very high mortality but moths took much longer to die. The two pyrethroids gave relatively slow kills, as did endosulfan. In a field trial, four insecticides were combined with the attractant and dead moths were collected daily from 1 to 4 days after application of the attracticide on 50 m rows of cotton. Significantly more dead moths ( H. armigera , H. punctigera and other noctuids) were found near the rows treated with attracticide containing methomyl compared with spinosad, fipronil and deltamethrin. For determining the impact of attracticides by recovering dead moths, quick acting insecticides are required to prevent moths flying away from the treated area to locations where they cannot be found. Methomyl and thiodicarb are suitable for this, but other insecticides especially spinosad could be used where quick action is not needed. Large numbers of moths were killed in the field trial, suggesting that attracticides for female Helicoverpa spp. moths could have significant impacts on local populations of these pests.  相似文献   

5.
Delta and wing traps baited with synthetic female sex pheromone of Leucinodes orbonalis Guenée were found to catch and retain ten times more moths than either Spodoptera or uni-trap designs. Locally-produced water and funnel traps were as effective as delta traps, although 'windows' cut in the side panels of delta traps significantly increased trap catch from 0.4 to 2.3 moths per trap per night. Trap catch was found to be proportional to the radius of sticky disc traps in the range 5-20 cm radius, discs with a 2.5 cm radius caught no moths. Wing traps placed at crop height caught significantly more moths than traps placed 0.5 m above or below the crop canopy. Replicated integrated pest management (IPM) trials (3 x 0.5 ha per treatment) were conducted in farmers fields with young and mature eggplant crops. Farmers applied insecticides at least three times a week in all check and IPM plots. In addition pheromone traps were placed out at a density of 100 per ha and infested shoots removed weekly in the 0.5 ha IPM plots. Pheromone trap catches were reduced significantly from 2.0 to 0.4 moths per trap per night respectively in check and IPM plots in a young crop and 1.1 to 0.3 moths per trap per night in check and IPM plots respectively in a mature crop. Fruit damage was significantly reduced from an average of 41.8% and 51.2% in check plots of young and mature crops respectively to 22% and 26.4 respectively in the associated IPM plots. Significant differences in pheromone trap catches and fruit damage were attained four and two weeks respectively after IPM treatments began in the mature crop whereas in the immature crop significant differences were not observed for the first eight to nine weeks respectively. The relative impact of removing infested shoots and mass trapping on L. orbonalis larval populations was not established in these trials but in both cases there was an estimated increase of approximately 50% in marketable fruit obtained by the combination of control techniques compared to insecticide treatment alone.  相似文献   

6.
Traps containing a sex attractant of the pea moth (Cydia nigricana) were used to monitor numbers of male moths in individual fields in south-eastern and eastern England from 1976 to 1978 at 16 or more sites/yr. Data concerning catches at different sites on several occasions over the flight season, and dates on which a ‘threshold catch’ was achieved were examined, and were related weakly to site locations within areas. Area spray warnings, based on trap catches at a few sites within a large area, provide a less reliable indication of the need to spray than on-site monitoring (two traps) in each pea field. On-site monitoring may be improved by specialist interpretation of trap catches.  相似文献   

7.
Large-plot studies were used to compare pheromone-mediated mating disruption and conventional insecticide applications for management of tufted apple bud moth, Platynota idaeusalis (Walker), in North Carolina in 1993 and 1994. Pheromone trap catches were reduced in mating disruption blocks, and traps placed in the lower stratum of the canopy had a higher level of trap capture reduction compared with traps placed in the upper stratum. First-generation tufted apple bud moth exposure to either pheromones for mating disruption or insecticides affected second generation pheromone trap catches in the lower and upper canopy. More second generation male moths were caught in pheromone traps placed in the upper compared with the lower canopy in blocks treated with pheromones for mating disruption during the first generation, whereas the opposite was true in blocks treated with insecticides during the first generation. Despite reduced trap catches in pheromone-treated blocks, egg mass densities were not reduced in these blocks compared with insecticide-treated blocks. Furthermore, fruit damage was not significantly different between mating disruption blocks and conventionally treated blocks in orchards with relatively low populations of tufted apple bud moth, but damage was greater in mating disruption blocks in orchards with higher moth densities.  相似文献   

8.
The autumn migration of Helicoverpa armigera (Hübner) was observed with radar and two types of light-trap at Langfang, Hebei province, China in 2001 and 2002. The sudden increase in the proportion of H. armigera moths in the searchlight trap indicated migration into the area and catches increased 10-fold during the second half of the night due to the landing of migrants before dawn. The moths' migratory flights took place at up to 2000 m above the ground, and moths flew differentially at times, and heights, when favourable (i.e. northerly) winds occurred. This facilitated the maximum displacement of moths towards the south during these 'return' migrations. The moths flew over the radar site at consistently high densities through the night, and the resulting flight durations of c. 10 h, at displacement speeds of 30-33 km h-1, would allow moths emerging in the far northeast of China (i.e. Liaoning and Jilin provinces and the Inner Mongolia autonomous region) to migrate into northern China (Hebei, Shandong and Henan provinces). The association of the seasonal migratory movements of H. armigera with crops in northern China is briefly discussed.  相似文献   

9.
The influence of trap placement on catches of codling moth, Cydia pomonella L., was examined in a series of studies conducted in orchards treated with Isomate-C Plus sex pheromone dispensers. Mark-recapture tests with sterilized moths released along the interface of pairs of treated and untreated apple and pear plots found that significantly more male but not female moths were recaptured on interception traps placed in the treated plots. In a second test, significantly higher numbers of wild male and female moths were caught on interception traps placed in treated versus untreated plots within a heavily infested orchard. The highest numbers of male moths were caught on traps placed along the interior edge of the treated plots. Trap position had no influence on the captures of female moths. In a third test, north-south transects of sex pheromone-baited traps were placed through adjacent treated and untreated plots that received a uniform release of sterilized moths. Traps on the upwind edge of the treated plots caught similar numbers of moths as traps upwind from the treated plots. Moth catch was significantly reduced at all other locations inside versus outside of the treated plots, including traps placed on the downwind edge of the treated plot. In a fourth test, five apple orchards were monitored with groups of sex pheromone-baited traps placed either on the border or at three distances inside the orchards. The highest moth counts were in traps placed at the border, and the lowest moth counts were in traps placed 30 and 50 m from the border. In a fifth test, the proportion of traps failing to catch any moths despite the occurrence of local fruit injury was significantly higher in traps placed 50 versus 25 m from the border. The implications provided by these data for designing an effective monitoring program for codling moth in sex pheromone-treated orchards are discussed.  相似文献   

10.
To study the phototactic responses of white‐backed planthopper, Sogatella furcifera (Horváth) and brown planthopper, Nilaparvata lugens (Stål) to different wavelengths, four colours of light traps (blue, green, yellow and red light‐emitting diodes) were placed in the same rice field along with a traditional black light trap. This study revealed that S. furcifera and N. lugens are more attracted to blue and green lights than that to yellow and red lights. During the 24 nights, compared with the black light trap, the blue LED trap could catch more rice planthoppers at 17 nights. Furthermore, catches of other species (moths and beetles) were substantially reduced in blue LED light traps. Multiple regression models were developed to assess the effect of weather factors on light trap catches of rice planthoppers. Rainfall and mean air temperature at a night mainly affected light trap catches of S. furcifera. Higher rainfall and lower temperature increased light trap catches of S. furcifera. However, wind speed was the main factor affecting the catches of N. lugens, and the lower incidence of catches was found in the night when wind speed exceeded 3.08 m/s. S. furcifera may be flying against wind at light wind nights by 0.3–1.5 m/s, whereas N. lugens may be flying down at strong wind nights by 1.5–3.08 m/s. Relative humidity did not significantly influence on trap catches. Consequently, light wavelengths, precipitation, average temperature and wind should be considered when monitoring rice planthoppers by light traps. Therefore, the blue LED light traps are worth using for monitoring planthoppers.  相似文献   

11.
Visual cues play a key role in host finding in many phytophagous insects, including the tomato potato psyllid (TPP), Bactericera cockerelli (?ulc) (Hemiptera: Triozidae), a serious pest of solanaceous crops. This study evaluated the response of TPP to sticky traps of one of three colours, up to four sizes, and with or without green borders in an organic potato crop in Hawke's Bay, New Zealand. On average, large traps caught a higher density of TPP than small traps (with or without border; 25 and 14 TPP per 100 cm2, respectively). Tomato potato psyllid density on the green border was affected by the colour of the centre trap; a blue centre resulted in substantially fewer TPP on the green border than a yellow centre (9.0 vs. 69.6 TPP per 100 cm2). Trap catches in early summer were male biased, whereas catches of male and female TPP in late summer were approximately equal.  相似文献   

12.
We examined the patterns of male pink bollworm (PBW), Pectinophora gossypiella (Saunders), moth catches in gossyplure-baited traps over a 15-year period from 1989 to 2003 in the Imperial Valley, California, USA. Monitoring was conducted during periods when different pink bollworm areawide control strategies were being used. Numbers of male pink bollworm moths caught in gossyplure-baited traps progressively decreased each year from 1990 to 1994 during short-season cotton production. High numbers of male moths caught in traps from 1995 to 1997 may have been related to moth migrations from the large cotton acreages grown in the Mexicali Valley bordering the Imperial Valley. Transgenic Bollgard (Bt) cotton was planted in 3% of the cotton area in 1996 and thereafter in 80%- 94% of the cotton area from 1997 to 2003. Pink bollworm moth trap catches were significantly lower from 1998 to 2003 than catches in 1995 to 1997, except for 1999. The trapping results suggested that Bt cotton had significant input on reduction of pink bollworm populations, confirming results of other investigators and providing additional documentation on the benefits of the Bt cotton culture.  相似文献   

13.
Abstract: With a view to using parasitoids and predators in integrated pest management of the target pest Helicoverpa armigera in cotton fields, basic studies on the egg parasitism, toxicity of insecticides to parasitoids and predators and compatibility of nuclear polyhedrosis virus (NPV) of H. armigera with other insecticides were conducted in the laboratory. Results revealed that egg parasitism in the laboratory by Trichogramma chilonis was 75.6%. Among the insecticides tested against T. chilonis and the predator Chrysoperla carnea , nimbecidine (neem product) and dipel resulted in zero mortality, with only a low level of mortality by dimethoate, cypermethrin, fenvalerate, alphamethrin and monocrotophos. Combinations of nimbecidine 2% + NPV at 250 larval equivalents (LE)/ha and dipel 8 l + NPV @250 LE/ha were the most effective treatments against H. armigera . The integrated pest management components ( T . chilonis , C . carnea , NPV, nimbecidine, dipel and synthetic chemicals) were imposed at different intervals on the basis of pheromone trap threshold level (7 moths/trap per night) on a consolidated block of 40 ha cotton (MCU-1) fields at two locations, Shankarabanda and Korlagundi. The results demonstrated a significant superiority of the IPM strategy in terms of both cost versus benefit and environmental safety over that used in the farmer's fields where only conventional control methods were followed.  相似文献   

14.
Abstract. Catches of Delia rudicum (L.) (Diptera: Anthomyiidae) were compared in water traps that reflected predominantly wavelengths shorter (violet and blue traps) and longer (green and yellow traps) than 500 nm.Traps were positioned in choice and no-choice situations against backgrounds of bare soil and weeds in the field and against backgrounds of brown and green paper in the laboratory.The physiological status of the flies was modified in the laboratory by denying them access to food sources and oviposition sites.
Males discriminated significantly more clearly than females between yellow and blue traps.The discrimination between yellow and blue traps was significantly more pronounced when the traps were presented in the choice than in the no-choice situation in both sexes.Green background (weeds and green paper) was highly preferred for landing and thus competed with the traps to such an extent that few flies were caught when non-preferred violet and blue traps were sited on green backgrounds.Flies seldom landed on the brown background (soil and brown paper) which resulted in the relative increase of catches in the non-preferred violet and blue traps.The preference for yellow traps was innate even in young flies with immature egg-follicles.Females that were ready to lay eggs, even those deprived of an oviposition site till the age of 8 days, also preferred yellow traps.In the no-choice situation, flies deprived of food landed with the same frequency in yellow and blue traps.Food deprivation, however, did not affect preference for yellow traps over the blue traps presented in a choice situation.  相似文献   

15.
孙江华  张彦周 《昆虫学报》2003,46(4):466-472
湿地松粉蚧是于1988年传入我国广东省的一种重要林业外来入侵害虫。现在该害虫在我国的分布面积为35.52万公顷,严重影响着我国南方松林的生长健康。该害虫在其原产地美国南方并不造成大的危害,也不是一种主要害虫。只有当大量应用杀虫剂防治其它害虫时,由于杀死了其天敌,湿地松粉蚧种群才会明显增长。为控制这一外来入侵害虫,中美两国于1995年开展了从美国引进天敌防治广东省湿地松粉蚧的林业合作项目。本文报道了1996~1997年间在美国南方三个种子园使用杀虫剂防治球果种实害虫时,杀虫剂对湿地松粉蚧种群及其两种主要天敌有明显的影响,这也间接地说明了寄生性天敌对湿地松粉蚧在自然条件下的控制作用。相关分析显示湿地松粉蚧种群数量与其天敌是密切相关的,但杀虫剂可以打破这种平衡。这一方面说明从美国引进天敌防治湿地松粉蚧是可行的,另一方面也显示在美国采集湿地松粉蚧天敌应在使用过杀虫剂后的林分中。  相似文献   

16.
Studies in Argentina and Chile during 2010–2011 evaluated a new trap (Ajar) for monitoring the oriental fruit moth, Grapholita molesta (Busck). The Ajar trap was delta‐shaped with a jar filled with a terpinyl acetate plus brown sugar bait attached to the bottom centre of the trap. The screened lid of the jar was inserted inside the trap, and moths were caught on a sticky insert surrounding the lid. The Ajar trap was evaluated with and without the addition of a sex pheromone lure and compared with delta traps left unbaited or baited with a sex pheromone lure and a bucket trap filled with the same liquid bait. Studies were conducted in a sex pheromone‐treated orchard in Argentina and an untreated orchard in Chile. In Chile, the Ajar trap without the sex pheromone lure caught significantly fewer males, females and total moths than the bucket trap, and fewer males and more females than the sex pheromone‐baited delta trap. Total moth catch did not differ between the Ajar trap without a sex pheromone lure and the sex pheromone‐baited trap. Adding a sex pheromone lure to the Ajar trap significantly increased total moth catches to levels not different from those in the bucket trap. However, the Ajar trap with the sex pheromone lure caught significantly more males and fewer females than the bucket trap. In Argentina, the Ajar trap with or without the addition of a sex pheromone lure caught similar numbers of both sexes and total moths as the bucket trap. The sex pheromone‐baited delta trap caught <4% of the number of moths as these three traps. The bucket trap in both studies caught significantly more non‐targets than the delta and Ajar traps. Moth catches in the Ajar trap declined significantly after 2–3 weeks when the bait was not replaced.  相似文献   

17.
We examined the relationship of yellow sticky trap captures of Bemisia tabaci (Gennadius) biotype B parasitoids to the local population of parasitoids as measured by leaf samples of parasitized whiteflies and mass release of parasitoids. Traps were placed in experimental collard and cowpea field plots in Charleston, SC, and in commercial organic fields of spring cantaloupe and watermelon in the Imperial Valley, CA. The exotic parasitoid Eretmocerus emiratus Zolnerowich and Rose was released in Imperial Valley fields to ensure parasitoid populations would be present. Bemisia adults were trapped in the greatest numbers on the upper surface of horizontally oriented sticky traps in melon fields. In contrast, the lower trap surfaces consistently captured more Eretmocerus than upper surfaces. Female parasitoids were trapped in greater numbers than males, especially on the lower trap surfaces. Progeny of released exotic Eretmocerus greatly outnumbered native E. eremicus Rose and Zolnerowich and Encarsia spp. on traps. Throughout the season, the trend of increasing numbers of Eretmocerus on traps parallelled the increase in numbers of whiteflies. Over the season, 23-84% of all B. tabaci fourth instars were visibly parasitized by Eretmocerus. The numbers of Eretmocerus caught by traps in cantaloupe were similar in trend to numbers on leaf samples in melons, but not with those in watermelon, where whitefly populations were lower. Parasitoid numbers were low in collard and cowpea samples, and no trend was observed in numbers of parasitoids captured on traps and numbers on leaves for these two crops. Overall, there were no significant correlations between sticky trap catches of parasitoids and numbers of parasitized whiteflies on leaf samples in any test fields. Nevertheless, sticky traps placed within crops may be useful for observing trends in whitefly parasitoid populations at a particular site and for detecting parasitoids at specific locations.  相似文献   

18.
Response of alate aphids to green targets on coloured backgrounds   总被引:2,自引:0,他引:2  
To study the effect of background colour on aphid landing on green targets (water pan traps), two field experiments were set up in Hessen, Germany, in 2003. Traps were put onto coloured plastic sheets (13 colours, straw mulch, transparent foil, and uncovered soil, Experiment 1). In Experiment 2, green water pans were again put on coloured plastic sheets (red, white, green, and yellow), and the sheets were either sprayed with insect glue or not. Backgrounds and traps were spectrally characterised with a field radiometer (320–950 nm). Aphid catches were highest in the traps on the uncovered background, and lowest in the traps on white or silver backgrounds. For Brevicoryne brassicae, Myzus persicae (Homoptera: Aphididae, Macrosiphini) and five further aphid species, there was a significant negative correlation between UV‐reflectance (320–400 nm) and log(N + 1)‐transformed number of individuals. However, the effect of straw mulch (reduced aphid catches with straw compared to the uncovered background), could not be attributed to differences in UV‐reflectance, as UV was almost identical in soil and straw. High numbers of alate aphids were caught in traps with dark backgrounds (e.g. black, dark green), a result which was attributed to the high contrast between the background and target. The substantially higher aphid numbers from targets with bare soil than from targets with spectrally similar black backgrounds were thought to be caused by the structure of the background surface: for alate aphids, landing close to the target on smooth surfaces may induce probing, and the lack of appropriate substrate will result in take‐off, whereas soil will not induce probing, and aphids will continue to move towards the green targets.  相似文献   

19.
The response of Trichogramma spp. egg parasitoids to colored sticky traps was evaluated in the field during two seasons (1995/1996, 1996/1997). Traps consisted of a glass tube coated with Bird-Tanglefoot® into which colored paper was inserted or clear traps without paper. Colors tested were white, green, blue, yellow and red in the first season and white, green, yellow and black in the second season. The proportion of both female and male parasitoids caught on the sticky traps was significantly different among colors, indicating that the parasitoids actively move between plants and are not solely carried along passively by wind. White was the color most preferred by female parasitoids, followed by clear and green traps. Yellow was preferred over black but was less attractive than green. Visual cues may be used by Trichogramma spp. during the habitat location process. The color preference of male Trichogramma spp. differed significantly from females with yellow and green being more attractive than white. For all colors, more female Trichogramma spp. were caught on the sticky traps (>85% of all wasps caught), indicating a lower activity level and/or shorter lifespan for males. The use of white cylindrical sticky traps for monitoring Trichogramma spp. populations in the field is recommended.  相似文献   

20.
ABSTRACT. Glossina morsitans morsitans Westw. and G. pallidipes Aust. flying around and landing on coloured screens and traps were sampled using electrocuting nets. External colour affected both attractiveness and efficiency of traps, such that yellow and green traps were unattractive and inefficient; black and red, attractive and inefficient; white, moderately attractive, and very efficient; and blue traps, attractive and efficient. The order of attractiveness of coloured screens was similar to that for traps. Landing responses were generally strongest on black surfaces, and weakest on white, but the results for blue were variable. Carbon dioxide and acetone odours improved trap catches and also eliminated most catch differences between traps differently coloured on their outer surfaces. The relative performances of traps coloured differently on inside surfaces only were not affected significantly by these odours, and in all cases black or red target areas inside the trap were required for optimum trap performance. When acetone and 1-octen-3-ol odours were used, catches were improved but the relative performance of differently coloured traps and screens was not changed. There were no obvious species differences in colour responses although numbers of G. morsitans were too low for statistical comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号