首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factors (IGFs) are key regulators of cell proliferation, differentiation and transformation, and are thus pivotal in cancer, especially breast, prostate and colon neoplasms. They are also important in many neurological and bone disorders. Their potent mitogenic and anti-apoptotic actions depend primarily on their availability to bind to the cell surface IGF-I receptor. In circulation and interstitial fluids, IGFs are largely unavailable as they are tightly associated with IGF-binding proteins (IGFBPs) and are released after IGFBP proteolysis. Here we report the 2.1 A crystal structure of the complex of IGF-I bound to the N-terminal IGF-binding domain of IGFBP-5 (mini-IGFBP-5), a prototype interaction for all N-terminal domains of the IGFBP family. The principal interactions in the complex comprise interlaced hydrophobic side chains that protrude from both IGF-I and the IGFBP-5 fragment and a surrounding network of polar interactions. A solvent-exposed hydrophobic patch is located on the IGF-I pole opposite to the mini-IGFBP-5 binding region and marks the IGF-I receptor binding site.  相似文献   

2.
15N NMR relaxation rates of mini-IGFBP-5, an N-terminal insulin-like growth factor binding domain of the insulin-like growth factor binding protein 5 (IGFBP-5), were analysed at three field strengths using the Lipari-Szabo procedure (see below) and reduced spectral density methods. Isotropic and anisotropic Lipari-Szabo models were analysed and an analytical formula for the overall correlation time for anisotropic molecules is presented. Mini-IGFBP-5 was found to be mainly rigid on fast ps time scales except for 11 unstructured flexible residues at the C-terminus. The insulin-like growth factor binding loop in the apo-protein exhibits small amounts of flexibility on fast time scales (ps to ns) but several loop residues show significant exchange broadening. These loop residues display no exchange broadening in the complex of IGF-II/mini-IGFBP-5. The isotropic overall tumbling time in solution at 31 degrees C of mini-IGFBP-5 complexed to IGF-II is tauc = 18.4 +/- 0.2 ns indicating a strong tendency for aggregation.  相似文献   

3.
Within the IGF axis, the insulin-like growth factor-binding proteins (IGFBPs) are known to play a pivotal role in cell proliferation and differentiation. Defined proteolysis of the IGFBPs is proposed to be an essential mechanism for regulating IGF bioavailability. The generated IGFBP fragments in part exhibit different IGF-dependent and -independent biological activities. Characterizing naturally occurring forms of IGFBPs in human plasma, we identified both a N- and a C-terminal fragment of IGFBP-4 by means of immunoreactivity screening. As a source for peptide isolation, we used large amounts of human hemofiltrate obtained from patients with chronic renal failure. Purification of the IGFBP-4 peptides from hemofiltrate was performed by consecutive cation-exchange and reverse-phase chromatographic steps. Mass spectrometric and sequence analysis revealed an M(r) of 13 233 for the purified N-terminal fragment spanning residues Asp(1)-Phe(122) of IGFBP-4 and an M(r) of 11 344 for the C-terminal fragment extending from Lys(136) to Glu(237). Proteolytic digestion and subsequent biochemical analysis showed that the six cysteines of the C-terminal IGFBP-4 fragment are linked between residues 153-183, 194-205, and 207-228 (disulfide bonding pattern, 1-2, 3-4, and 5-6). Plasmon resonance spectroscopy, ligand blot analysis, and saturation and displacement studies demonstrated a very low affinity of the C-terminal IGFBP-4 fragment for the IGFs (IGF-II, K(d) = 690 nM; IGF-I, K(d) > 60 nM), whereas the N-terminal fragment retained significant IGF binding properties (IGF-II, K(d) = 17 nM; IGF-I, K(d) = 5 nM). This study provides the first molecular characterization of circulating human IGFBP-4 fragments formed in vivo exhibiting an at least 5-fold decrease in the affinity of the N-terminal IGFBP-4 fragment for the IGFs and a very low IGF binding capacity of the C-terminal fragment.  相似文献   

4.
Ricort JM  Lombet A  Lassarre C  Binoux M 《FEBS letters》2002,527(1-3):293-297
Insulin-like growth factor binding protein-3, IGFBP-3, specifically binds to IGFs with high affinity, but it is also capable of modulating the IGF-I signalling pathway or inducing apoptosis independently of its binding to IGFs. The molecular mechanisms underlying the action of IGFBP-3 have not been elucidated. In this study, we have demonstrated that binding of IGFBP-3 to a cell surface receptor in MCF-7 breast carcinoma cells induces a rapid and transient increase in intracellular free calcium. This increase was mediated via a pertussis toxin-sensitive pathway, indicating that the IGFBP-3 receptor may be specifically coupled to a Gi protein. The effect of IGFBP-3 on calcium concentrations was dose-dependent and also occurred when IGFBP-3 was complexed with either IGF-I or heparin, suggesting that the receptor binding site is probably located in the least conserved central domain of IGFBP-3. Neither IGFBP-1, nor IGFBP-5 (structurally the closest to IGFBP-3) altered intracellular calcium concentrations. These results provide evidence that a specific intracellular signal is triggered by IGFBP-3 binding to a cell surface receptor.  相似文献   

5.
Insulin-like growth factor-binding protein-3 and -5 (IGFBP-3 and -5) have been shown to bind insulin-like growth factor-I and -II (IGF-I and -II) with high affinity. Previous studies have proposed that the N-terminal region of IGFBP-5 contains a hydrophobic patch between residues 49 and 74 that is required for high affinity binding. These studies were undertaken to determine if mutagenesis of several of these residues resulted in a reduction of the affinity of IGFBP-3 and -5 for IGF-I. Substitutions for residues 68, 69, 70, 73, and 74 in IGFBP-5 (changing one charged residue, Lys(68), to a neutral one and the four hydrophobic residues to nonhydrophobic residues) resulted in an approximately 1000-fold reduction in the affinity of IGFBP-5 for IGF-I. Substitutions for homologous residues in IGFBP-3 also resulted in a >1000-fold reduction in affinity. The physiologic consequence of this reduction was that IGFBP-3 and -5 became very weak inhibitors of IGF-I-stimulated cell migration and DNA synthesis. Likewise, the ability of IGFBP-5 to inhibit IGF-I-stimulated receptor phosphorylation was attenuated. These changes did not appear to be because of alterations in protein folding induced by mutagenesis, because the IGFBP-5 mutant was fully susceptible to proteolytic cleavage by a specific IGFBP-5 protease. In summary, residues 68, 69, 70, 73, and 74 in IGFBP-5 appear to be critical for high affinity binding to IGF-I. Homologous residues in IGFBP-3 are also required, suggesting that they form a similar binding pocket and that for both proteins these residues form an important component of the core binding site. The availability of these mutants will make it possible to determine if there are direct, non-IGF-I-dependent effects of IGFBP-3 and -5 on cellular physiologic processes in cell types that secrete IGF-I.  相似文献   

6.
Insulin-like growth factor-binding protein-3 (IGFBP-3), the major IGFBP in the circulation, sequesters IGF in a stable ternary complex with the acid-labile subunit. The high affinity IGF-binding site is proposed to reside within an N-terminal hydrophobic domain in IGFBP-3, but C-terminal residues have also been implicated in the homologous protein IGFBP-5. We have mutated in various combinations Leu(77), Leu(80), and Leu(81) in the N terminus and Gly(217) and Gln(223) in the C terminus of IGF-BP-3. All mutants retained immunoreactivity toward a polyclonal IGFBP-3 antibody, whereas IGF ligand blotting showed that all of the mutants had reduced binding to IGFs. Both solution IGF binding assays and BIAcore analysis indicated that mutations to the N-terminal region caused greater reduction in IGF binding activity than C-terminal mutations. The combined N- and C-terminal mutants showed undetectable binding to IGF-I but retained <10% IGF-II binding activity. Reduced ternary complex formation was seen only in mutants that had considerably reduced IGF-I binding, consistent with previous studies indicating that the binary IGF.IGFBP-3 complex is required for acid-labile subunit binding. Decreased IGF binding was also reflected in the inability of the mutants to inhibit IGF-I signaling in IGF receptor overexpressing cells. However, when present in excess, IGFBP-3 analogs defined as non-IGF-binding by biochemical assays could still inhibit IGF signaling. This suggests that residual binding activity of IGFBP-3 mutants may still be sufficient to inhibit IGF biological activity and questions the use of such analogs to study IGF-independent effects of IGFBP-3.  相似文献   

7.
Insulin-like growth factor binding proteins (IGFBPs) control the extracellular distribution, function, and activity of IGFs. Here, we report an X-ray structure of the binary complex of IGF-I and the N-terminal domain of IGFBP-4 (NBP-4, residues 3-82) and a model of the ternary complex of IGF-I, NBP-4, and the C-terminal domain (CBP-4, residues 151-232) derived from diffraction data with weak definition of the C-terminal domain. These structures show how the IGFBPs regulate IGF signaling. Key features of the structures include (1) a disulphide bond ladder that binds to IGF and partially masks the IGF residues responsible for type 1 IGF receptor (IGF-IR) binding, (2) the high-affinity IGF-I interaction site formed by residues 39-82 in a globular fold, and (3) CBP-4 interactions. Although CBP-4 does not bind individually to either IGF-I or NBP-4, in the ternary complex, CBP-4 contacts both and also blocks the IGF-IR binding region of IGF-I.  相似文献   

8.
Insulin-like growth factor binding proteins (IGFBPs) modulate the activity and distribution of insulin-like growth factors (IGFs). IGFBP-6 differs from other IGFBPs in being a relatively specific inhibitor of IGF-II actions. Another distinctive feature of IGFBP-6 is its unique N-terminal disulfide linkages; the N-domains of IGFBPs 1-5 contain six disulfides and share a conserved GCGCC motif, but IGFBP-6 lacks the two adjacent cysteines in this motif, so its first three N-terminal disulfide linkages differ from those of the other IGFBPs. The contributions of the N- and C-domains of IGFBP-6 to its IGF binding properties and their structure-function relationships have been characterized in part, but the structure and function of the distinctive N-terminal subdomain of IGFBP-6 are unknown. Here we report the solution structure of a polypeptide corresponding to residues 1-45 of the N-terminal subdomain of IGFBP-6 (NN-BP-6). The extended structure of the N-terminal subdomain of IGFBP-6 is very different from that of the short two-stranded beta-sheet of the N-terminal subdomain of IGFBP-4 and, by implication, the other IGFBPs. NN-BP-6 contains a potential cation-binding motif; lanthanide ion binding was observed, but no significant interaction was found with physiologically relevant metal ions like calcium or magnesium. However, this subdomain of IGFBP-6 has a higher affinity for IGF-II than IGF-I, suggesting that it may contribute to the marked IGF-II binding preference of IGFBP-6. The extended structure and flexibility of this subdomain of IGFBP-6 could play a role in enhancing the rate of ligand association and thereby be significant in IGF recognition.  相似文献   

9.
Insulin-like growth factor binding proteins (IGFBPs) have been shown to serve as carrier proteins for the insulin-like growth factors (IGFs) and to modulate their biologic effects. Since extracellular matrix (ECM) has been shown to be a reservoir for IGF-I and IGF-II, we examined the ECM of cultured human fetal fibroblasts and found that IGFBP-5 was incorporated intact into ECM, while mostly inert proteolytic fragments were found in the medium. In contrast, two other forms of IGFBP that are secreted by these cells were either present in ECM in minimal amounts (IGFBP-3) or not detected (IGFBP-4). Likewise, when purified IGFBPs were incubated with ECM, IGFBP-5 bound preferentially. IGFBP-5 was found to bind to types III and IV collagen, laminin, and fibronectin. Increasing salt concentrations inhibited the binding of IGFBP-5 to ECM and accelerated the release of IGFBP-5 from ECM, suggesting an ionic basis for this interaction. ECM-associated IGFBP-5 had a sevenfold decrease in affinity for IGF-I compared to IGFBP-5 in solution. Furthermore, when IGFBP-5 was present in cell culture substrata, it potentiated the growth stimulatory effects of IGF- I on fibroblasts. When IGFBP-5 was present only in the medium, it was degraded to a 22-kD fragment and had no effect on IGF-I-stimulated growth. We conclude that IGFBP-5 is present in fibroblast ECM, where it is protected from degradation and can potentiate the biologic actions of IGF-I. These findings provide a molecular explanation for the association of the IGF's with the extracellular matrix, and suggest that the binding of the IGF's to matrix, via IGFBP-5, may be important in mediating the cellular growth response to these growth factors.  相似文献   

10.
We have previously reported that two highly conserved amino acids in the C-terminal domain of rat insulin-like growth factor-binding protein (IGFBP)-5, Gly(203) and Gln(209), are involved in binding to insulin-like growth factor (IGF)-1. Here we report that mutagenesis of both amino acids simultaneously (C-Term mutant) results in a cumulative effect and an even greater reduction in IGF-I binding: 30-fold measured by solution phase IGF binding assay and 10-fold by biosensor analysis. We compared these reductions in ligand binding to the effects of specific mutations of five amino acids in the N-terminal domain (N-Term mutant), which had previously been shown by others to cause a very large reduction in IGF-I binding (). Our results confirm this as the major IGF-binding site. To prove that the mutations in either N- or C-Term were specific for IGF-I binding, we carried out CD spectroscopy and showed that these alterations did not lead to gross conformational changes in protein structure for either mutant. Combining these mutations in both domains (N+C-Term mutant) has a cumulative effect and leads to a 126-fold reduction in IGF-I binding as measured by biosensor. Furthermore, the equivalent mutations in the C terminus of rat IGFBP-2 (C-Term 2) also results in a significant reduction in IGF-I binding, suggesting that the highly conserved Gly and Gln residues have a conserved IGF-I binding function in all six IGFBPs. Finally, although these residues lie within a major heparin-binding site in IGFBP-5 and -3, we also show that the mutations in C-Term have no effect on heparin binding.  相似文献   

11.
The insulin-like growth factor binding proteins (IGFBPs) play a major role in the regulation of the effects and the bioavailability of the insulin-like growth factors (IGFs). IGFs are released from IGFBP-IGF complexes by proteolysis of IGFBPs generating fragments with reduced ligand-binding properties. To identify naturally occurring fragments of IGFBP-2, a peptide library generated from human hemofiltrate was immunologically screened. Purification of immunoreactive IGFBP-2 fragments was performed by consecutive chromatographic steps. A total of 18 different IGFBP-2 fragments was isolated and characterized. The peptides exhibited different N-terminal amino acid residues that were located in the variable midregion of IGFBP-2. Four major cleavage sites were determined to be between Tyr103 and Gly104, Leu152 and Ala153, Arg156 and Glu157, and Gln165 and Met166. The resulting fragments were further processed by amino and/or carboxy peptidases and comprised 37-185 amino acid residues. Ligand blotting, solution binding assays, and BIAcore analyses revealed that all tested fragments retained low IGF-binding capacity. The most abundant fragment IGFBP-2 (167-279) showed 10% of IGF-II binding compared to recombinant human (rh)IGFBP-2. Furthermore, the disulfide bonding pattern of the C-terminal domain of rhIGFBP-2 was defined, indicating linkages between cysteine residues 191-225, 236-247, and 249-270. This study provides the most comprehensive molecular characterization of human IGFBP-2 fragments formed in vivo, exhibiting both residual IGF-binding capacities and the integrin-binding sequence.  相似文献   

12.
13.
The biological activity of IGF-I and -II is controlled by six binding proteins (IGFBPs), preventing the IGFs from interacting with the IGF receptor. Proteolytic cleavage of IGFBPs is one mechanism by which IGF can be released to bind the receptor. The IGFBPs are usually studied individually, although the presence of more than one of the IGFBPs in most tissues suggests a cooperative function. Thus, the IGFBPs are part of regulatory networks with proteolytic enzymes in one end and the IGF receptor in the other end. We have established a model system that allows analysis of the dynamics between IGF, IGFBP-4 and -5, the IGF receptor, and the proteolytic enzyme PAPP-A, which specifically cleaves both IGFBP-4 and -5. We demonstrate different mechanisms of IGF release from IGFBP-4 and -5: cooperative binding to IGF is observed for the proteolytic fragments of IGFBP-5, but not fragments of IGFBP-4. Furthermore, we find that PAPP-A-mediated IGF-dependent cleavage of IGFBP-4 is inhibited by IGFBP-5, which sequesters IGF from IGFBP-4, and that cleavage of both IGFBP-4 and -5 is required for the release of bioactive IGF. Finally, we show that cell surface-localized proteolysis of IGFBP-4 represents the final regulatory step of efficient IGF delivery to the receptor. Our data define a regulatory system in which molar ratios between the IGFBPs and IGF and between the different IGFBPs, sequential proteolytic cleavage of the IGFBPs, and surface association of the activating proteinase are key elements in the regulation of IGF receptor stimulation.  相似文献   

14.
The 84-amino-acid-long sequence of perlustrin showed homology of the abalone nacre protein to the N-terminal domain of mammalian insulin-like growth factor binding proteins (IGFBPs). Despite the evolutionary distance between mollusks and mammals, the sequence identity was 40% including 12 conserved cysteines. However, the residues which were suggested recently to bind IGF-II in a complex with IGFBP-5 were conserved only partially. Nevertheless, perlustrin bound human IGFs with K(D) approximately 10(-7) M. This was the same affinity range as measured before for the interaction of isolated IGFBP-5 N-terminal domains with IGFs. Moreover, perlustrin bound bovine insulin with only approximately two- to sevenfold lower affinity than IGFs. Sequence similarity and growth factor binding identified perlustrin unequivocally as a member of the IGFBP family, the first found in an invertebrate biomineral. Nacre is known to contain proteinaceous factors which promote bone formation in vitro and in vivo. Bone contains IGFBPs which influence bone metabolism in many ways by modulating either IGF effects or IGF independently. Thus, perlustrin may provide a first clue at the molecular level to what these two phylogenetically rather distant biomineralization systems have in common.  相似文献   

15.
Insulin-like growth factor binding protein-3 (IGFBP-3) can inhibit cell growth by directly interacting with cells, as well as by forming complexes with IGF-I and IGF-II that prevent their growth-promoting activity. The present study examines the mechanism of inhibition of DNA synthesis by IGFBP-3 in CCL64 mink lung epithelial cells. DNA synthesis was measured by the incorporation of 5-bromo-2'-deoxyuridine, using an immunocolorimetric assay. Recombinant human IGFBP-3 (rh[N109D,N172D]IGFBP-3) inhibited DNA synthesis in proliferating and quiescent CCL64 cells. Inhibition was abolished by co-incubation of IGFBP-3 with a 20% molar excess of Leu(60)-IGF-I, a biologically inactive IGF-I analogue that binds to IGFBP-3 but not to IGF-I receptors. DNA synthesis was not inhibited by incubation with a preformed 1:1 molar complex of Leu(60)-IGF-I and IGFBP-3, indicating that only free IGFBP-3 inhibits CCL64 DNA synthesis. Inhibition by IGFBP-3 is not due to the formation of biologically inactive complexes with free IGF, since endogenous IGFs could not be detected in CCL64 conditioned media; any IGFs that might have been present could only have existed in inactive complexes, since endogenous IGFBPs were present in excess; and biologically active IGFs were not displaced from endogenous IGFBP complexes by Leu(60)-IGF-I. After incubation with CCL64 cells, (125)I-IGFBP-3 was covalently cross-linked to a major thick similar400-kDa complex. This complex co-migrated with a complex formed after incubation with (125)I-labeled transforming growth factor-beta (TGF-beta) that has been designated the type V TGF-beta receptor. (125)I-IGFBP-3 binding to the thick similar400-kDa receptor was inhibited by co-incubation with unlabeled IGF-I or Leu(60)-IGF-I. The ability of Leu(60)-IGF-I to decrease both the inhibition of DNA synthesis by IGFBP-3 and IGFBP-3 binding to the thick similar400-kDa receptor is consistent with the hypothesis that the thick similar400-kDa IGFBP-3 receptor mediates the inhibition of CCL64 DNA synthesis by IGFBP-3.  相似文献   

16.
Signaling through the IGF-I receptor by locally synthesized IGF-I or IGF-II is critical for normal skeletal development and for bone remodeling and repair throughout the lifespan. In most tissues, IGF actions are modulated by IGF-binding proteins (IGFBPs). IGFBP-5 is the most abundant IGFBP in bone, and previous studies have suggested that it may either enhance or inhibit osteoblast differentiation in culture and may facilitate or block bone growth in vivo. To resolve these contradictory observations and discern the mechanisms of action of IGFBP-5 in bone, we studied its effects in differentiating osteoblasts and in primary bone cultures. Purified wild-type (WT) mouse IGFBP-5 or a recombinant adenovirus expressing IGFBP-5WT each prevented osteogenic differentiation induced by the cytokine bone morphogenetic protein (BMP)-2 at its earliest stages without interfering with BMP-mediated signaling, whereas an analog with reduced IGF binding (N domain mutant) was ineffective. When added at later phases of bone cell maturation, IGFBP-5WT but not IGFBP-5N blocked mineralization, prevented longitudinal growth of mouse metatarsal bones in short-term primary culture, and inhibited their endochondral ossification. Because an IGF-I variant (R3IGF-I) with diminished affinity for IGFBPs promoted full osteogenic differentiation in the presence of IGFBP-5WT, our results show that IGFBP-5 interferes with IGF action in osteoblasts and provides a framework for discerning mechanisms of collaboration between signal transduction pathways activated by BMPs and IGFs in bone.  相似文献   

17.
In the absence of a complete tertiary structure to define the molecular basis of the high affinity binding interaction between insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs), we have investigated binding of IGFs by discrete amino-terminal domains (amino acid residues 1-93, 1-104, 1-132, and 1-185) and carboxyl-terminal domains (amino acid residues 96-279, 136-279, and 182-284) of bovine IGFBP-2 (bIGFBP-2). Both halves of bIGFBP-2 bound IGF-I and IGF-II in BIAcore studies, albeit with different affinities ((1-132)IGFBP-2, K(D) = 36.3 and 51.8 nm; (136-279)IGFBP-2HIS, K(D) = 23.8 and 16.3 nm, respectively). The amino-terminal half appears to contain components responsible for fast association. In contrast, IGF binding by the carboxyl-terminal fragment results in a more stable complex as reflected by its K(D). Furthermore, des(1-3)IGF-I and des(1-6)IGF-II exhibited reduced binding affinity to (1-279)IGFBP-2HIS, (1-132)IGFBP-2, and (136-279)IGFBP-2HIS biosensor surfaces compared with wild-type IGF. A charge reversal at positions 3 and 6 of IGF-I and IGF-II, respectively, affects binding interactions with the amino-terminal fragment and full-length bIGFBP-2 but not the carboxyl-terminal fragment.  相似文献   

18.
19.
Y Dubaquié  H B Lowman 《Biochemistry》1999,38(20):6386-6396
The bioavailability of insulin-like growth factor I (IGF-I) in the serum and tissues is controlled by members of the IGF binding protein family (IGFBP). These proteins form high-affinity complexes with IGF-I and thereby either inhibit or potentiate its mitogenic and metabolic effects. Thus, understanding the IGF-IGFBP interaction at the molecular level is crucial for attempts to modulate IGF-I activity in vivo. We have systematically investigated the binding contribution of each IGF-I amino acid side chain toward IGFBP-1 and IGFBP-3, combining alanine-scanning mutagenesis and monovalent phage display. Surprisingly, most IGF-I residues could be substituted by alanines, resulting in less than 5-fold affinity losses for IGFBP-3. In contrast, binding of IGFBP-1 was more sensitive to alanine substitutions in IGF-I. The glutamate and phenylalanine at positions 3 and 49 were identified as major specificity determinants for IGFBP-1: the corresponding alanine mutations, E3A and F49A, selectively decreased IGFBP-1 binding by 34- and 100-fold, whereas IGFBP-3 affinity was not affected or reduced maximally 4-fold. No side chain specificity determinant was found for IGFBP-3. Instead, our results suggest that the N-terminal backbone region of IGF-I is important for binding to IGFBP-3. The fact that the functional binding epitopes on IGF-I are overlapping but distinct for both binding proteins may be exploited to design binding protein-specific IGF variants.  相似文献   

20.
Insulin-like growth factor binding protein-5 (IGFBP-5) and thrombospondin-1 (TS-1) are both present in extracellular matrix (ECM). Both proteins have been shown to bind to one another with high affinity. The purpose of these studies was to determine how the interaction between IGFBP-5 and TS-1 modulates IGF-I actions in porcine aortic smooth muscle cells (pSMC) in culture. The addition of increasing concentrations of TS-1 to pSMC cultures enhanced the protein synthesis and cell migration responses to IGF-I; whereas the addition of IGFBP-5 alone resulted in minimal changes. In contrast, the addition of IGFBP-5 to cultures that were also exposed to IGF-I and TS-1 resulted in inhibition of protein synthesis. When the cell migration response was assessed, the response to IGF-I plus TS-1 was also significantly inhibited by the addition of IGFBP-5, whereas 1.0 microg/ml of IGFBP-5 alone had no effect on the response to IGF-I.To determine the molecular mechanism by which this inhibition occurred, a mutant form of IGFBP-5 that does not bind to IGF-I was tested. This mutant was equipotent compared to native IGFBP-5 in its ability to inhibit both protein synthesis and cell migration responses to IGF-I plus TS-1 thus excluding the possibility that IGFBP-5 was inhibiting the response to TS-1 and IGF-I by inhibiting IGF-I binding to the IGF-I receptor. To determine if an interaction between TS-1 and IGFBP-5 was the primary determinant of the inhibitory effect of IGFBP-5, an IGFBP-5 mutant that bound poorly to TS-1 was utilized. The addition of 1.0 microg/ml of this mutant did not inhibit the protein synthesis or cell migration responses to IGF-I plus TS-1. To determine the mechanism by which IGFBP-5 binding to TS-1 inhibited cellular responses to TS-1 plus IGF-I, TS-1 binding to integrin associated protein (IAP) was assessed. The addition of IGFBP-5 (1.0 microg/ml) inhibited TS-1-IAP association. In contrast, a mutant form of IGFBP-5 that bound poorly to TS-1 had a minimal effect on TS-1 binding to IAP. Further analysis showed that IGFBP-5 addition altered the ability of TS-1 to modulate the SHPS-1/IAP interaction. When the IGFBP-5 mutant that did not bind to IGF-I was incubated with TS-1 and IGF-I, it inhibited the capacity of TS-1 to enhance the IGF-I receptor phosphorylation and MAP kinase activation in response to IGF-I. In contrast, the IGFBP-5 mutant that did not bind to TS-1 had no effect on IGF-I stimulated IGF-I receptor phosphorylation or MAP kinase activation. These results indicate that IGFBP-5 inhibits the binding of TS-1 to IAP, and this results in an alteration of the ability of TS-1 to modulate the disruption of the IAP/SHPS-1 interaction which leads to attenuation of the ability of TS-1 to enhance cellular responsiveness to IGF-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号