首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Head and neck squamous cell carcinoma is the sixth most common type of neoplasm worldwide, but its prognosis has not improved significantly in recent years. Therefore, efforts need to be intensified to gain a better understanding of this disease and develop novel treatment strategies. Inhibition of cytidine 5′‐diphosphate 1,2‐diacyl‐sn‐glycerol: inositol transferase by inostamycin, an antibiotic isolated from Streptomyces sp. MH816‐AF15, induces G1 cell cycle arrest accompanied by a decrease in cyclin D1 and phosphorylated RB protein levels, along with suppression of in vitro invasive ability through reduced production of matrix metalloproteinases (MMP‐2 and MMP‐9) and cell motility in head and neck cancer cell lines. Furthermore, inostamycin abrogated the stimulatory effect of VEGF (vascular endothelial growth factor) on growth and migration activities of endothelial cells by targeting extracellular signal‐regulated kinase‐cyclin D1 and p38 pathways, respectively. Because inostamycin has both antiproliferative and anti‐invasive abilities, inhibition of phosphatidylinositol synthesis could be a potent therapeutic strategy for head and neck cancer as the ‘cancer dormant therapy’, i.e. a therapeutic concept to prolong ‘time to treatment failure’ or ‘time to progression’.  相似文献   

2.
Increasing evidences have showed that autophagy played a significant role in oral squamous cell carcinoma (OSCC). Purpose of our study was to explore the prognostic value of autophagy-related genes (ATGs) and screen autophagy-related biomarkers for OSCC. RNA-seq and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database following extracting ATG expression profiles. Then, differentially expressed analysis was performed in R software and a risk score model according to ATGs was established. Moreover, comprehensive bioinformatics analyses were used to screen autophagy-related biomarkers which were later verified in OSCC tissues and cell lines. A total of 232 ATGs were extracted, and 37 genes were differentially expressed in OSCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that these genes were mainly located in autophagosome membrane and associated with autophagy. Furthermore, the risk score on basis of ATGs was identified as potential independent prognostic biomarker. Moreover, ATG12 and BID were identified as potential autophagy-related biomarkers of OSCC. This study successfully constructed a risk model, and the risk score could predict the prognosis of OSCC patients accurately. Moreover, ATG12 and BID were identified as two potential independent prognostic autophagy-related biomarkers and might provide new OSCC therapeutic targets.  相似文献   

3.
4.
This work was undertaken to explore the effects of platycodin D, a triterpenoid saponin from Platycodon grandiflorum, on the growth and invasiveness of human oral squamous cell carcinoma (OSCC). Platycodin D caused a significant, concentration‐dependent inhibition of cell viability and induced significant apoptosis in OSCC cells. Moreover, platycodin D significantly inhibited OSCC cell invasion. At the molecular level, platycodin D increased the amounts of IκBα protein and reduced the expression of phosphorylated NF‐κB p65, MMP‐2, and MMP‐9. Ectopic expression of constitutively active NF‐κB p65 prevented platycodin D‐mediated induction of apoptosis and suppression of invasion in OSCC cells. In vivo studies confirmed that platycodin D retarded the growth of subcutaneous SCC‐4 xenograft tumors and reduced phosphorylation of NF‐κB p65. Altogether, platycodin D shows inhibitory activity on OSCC growth and invasion through inactivation of the NF‐κB pathway and might provide therapeutic benefits in the treatment of OSCC.  相似文献   

5.
6.
We examined chemosensitivity to 5-fluorouracil (5-FU) in four human gastric cancer cell lines, by analyzing the expression of p53 and its related genes. Treatment with 1mM 5-FU induced variable degrees of apoptosis in the cultured cells. The apoptotic indices 72 h after treatment were approximately 14% in MKN-74 (wild-type p53 gene), 12% in MKN-45 (wild-type), 3% in MKN-28 (mutated) and 0.5% in KATO-III cells (deleted), respectively. On the other hand, 50 M 5-FU had little effect on the induction of apoptosis in MKN-74 cells, the value being approximately 2% after 72 h. Induction of P53 expression was noted 3 h after initiating the treatment, followed by the induction of P21/Waf1 after 6 h in both MKN-74 and MKN-45 cells. The same expression mode was noted in MKN-74 treated with 50 M 5-FU. Conversely, the level of P53 expression was constant in MKN-28 cells and absent in KATO-III cells, in which P21/Waf1 had never been induced. The Bax/Bcl-2 expression ratio was gradually elevated for up to 72 h in MKN-74 and MKN-45 cells treated with 1mM 5-FU; in contrast, it was unchanged in MKN-28 and KATO-III cells, and MKN-74 treated with 50 M 5-FU. These results might indicate that (1) 1mM 5-FU induces apoptosis in cultured gastric cancer cells carrying the wild-type p53 gene, but not those carrying the mutated type or a gene deletion, and (2) the elevated Bax/Bcl-2 expression ratio plays a more crucial role than the higher expression of P21/Waf1 in the induction of p53- gene dependent apoptosis.  相似文献   

7.
S-adenosylhomocysteine hydrolase (SAHH) is the sole enzyme that catalyses the hydrolysis of S-adenosylhomocysteine (SAH) in methylation reaction. Previous studies have shown that its inhibition or deficiency leads to several human disorders such as severe coagulopathy, hepatopathy and myopathy. However, the effects of SAHH on esophageal squamous cell carcinoma (ESCC) cells have not been explored so far. To determine whether SAHH is involved in carcinogenesis of the esophagus, we investigated the expression of SAHH in ESCC and normal esophageal epithelial cells and found that SAHH was downregulated in ESCC cells compared with normal esophageal epithelial cells (P < 0.05). The overexpressed SAHH in ESCC cells promoted cell apoptosis, inhibited cell migration and adhesion, but did not affect the cell proliferation and cell cycle. Furthermore, an interaction of SAHH with receptor of activated C kinase 1 (RACK1) protein was detected by coimmunoprecipitation and an increased RACK1, which is caused by overexpression of SAHH, was verified by Western blotting. The findings mentioned above demonstrate that SAHH can promote apoptosis, inhibit migration and adhesion of ESCC cells suggesting that it may be involved in carcinogenesis of the esophagus.  相似文献   

8.
Docetaxel, cisplatin plus fluorouracil (DCF) regimen is a useful chemotherapy, but is sometimes withdrawn due to severe adverse effects (AE). In this study, we examined whether the chronotherapy of DCF regimen could reduce the drugs-induced toxicities in clinical practice. Patients with oral squamous cell carcinoma were enrolled. Chemotherapy started at 10:30 (Morning-dosing) or 18:30 (Evening-dosing) for 5 days by a cross-over design. AE were assessed for 14 days after an initiation of each dosing. The grades of nausea, vomiting and neutropenia were smaller during Evening-dosing than during Morning-dosing. These data suggest that the chrono-chemotherapy might provide a merit for reducing the DCF regimen-related severe AE.  相似文献   

9.
Di(2‐ethylhexyl)phthalate (DEHP) is one of the many environmental chemicals that are widely used in polyvinyl chloride products, vinyl flooring, food packaging and infant toys. They cause cell proliferation or dysfunction of human liver. The purpose of this study is to investigate the inhibitory effect of a glycoprotein (24 kDa) isolated from Zanthoxylum piperitum DC (ZPDC) on proliferation of liver cell in the DEHP‐induced BNL CL. 2 cells. [3H]‐thymidine incorporation, intracellular reactive oxygen species (ROS), intracellular Ca2+ mobilization and activity of protein kinase C (PKC) were measured using radioactivity and fluorescence method respectively. The expression of mitogen‐activated protein kinases [extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK)], activator protein (AP)‐1 (c‐Jun and c‐Fos), proliferating cell nuclear antigen (PCNA) and cell cycle‐related factors (cyclin D1/cyclin‐dependent kinase [CDK] 4) were evaluated using Western blotting or electrophoretic mobility shift assay. The results in this study showed that the levels of [3H]‐thymidine incorporation, intracellular ROS, intracellular Ca2+ mobilization and activity of PKCα were inhibited by ZPDC glycoprotein (100 µg/ml) in the DEHP‐induced BNL CL. 2 cells. Also, activities of ERK, JNK and AP‐1 were reduced by ZPDC glycoprotein (100 µg/ml). With regard to cell proliferation, activities of PCNA and cyclin D1/CDK4 were significantly suppressed at treatment with ZPDC glycoprotein (100 µg/ml) in the presence of DEHP. Taken together, these findings suggest that ZPDC glycoprotein significantly normalized activities of PCNA and cyclin D1/CDK4, which relate to cell proliferation factors. Thus, ZPDC glycoprotein appears to be one of the compounds derived from natural products that are able to inhibit cell proliferation in the phthalate‐induced BNL CL. 2 cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
BackgroundThe secretome of the dental pulp mesenchymal stem cells (DPMSCS-S) have an array of regenerative potential and could aid in the rehabilitation of cancer patients post-therapeutic interventions, although caution is required as DPMSC-S have shown to augment prostate cancer cells. Thus, it is vital to assess if these pro-carcinogenic effects extend to other cancer types.ObjectiveTo assess if DPMSC-S has any pro-carcinogenic effect on oral cancer, breast cancer, and melanoma cell lines.Materials and methodsConditioned media obtained from the isolated and characterized DPMSC (DPMSC-CM) were profiled using bead-based multiplex assay. AW13515 (oral cancer), MDA-MB-231 (breast cancer), and A-375 (melanoma) cell lines were exposed to 20%, 50%, and 100% DPMSC-CM for 24, 48, and 72 h. DPMSC-CM effect on the cancer cell properties and secretome were assessed.ResultsDPMSC-CM augmented invasion, adhesion, multi-drug resistance, DNA repair, and mitochondrial repair in AW13516 through upregulation of growth factors Ang-2, EGF, M−CSF, PDGF-AA, PDGF-BB, pro-inflammatory cytokines TNF-α, IL-2, downregulation of anti-inflammatory cytokine TGF-β1, and pro-inflammatory cytokine IL-4. In MDA-MB-231, invasion, and multi-drug resistance were augmented through upregulation of growth factors EGF, EPO, G-CSF, HGF, M−CSF, PDGF-AA, and pro-inflammatory cytokine TNF-α, CXCL10, IL-12p70. EMT, invasion, migration, and adhesion were augmented in A-375 through upregulation of growth factors Ang-2, EGF, PDGF-BB, TGF-α, pro-inflammatory cytokines TNF-α, and IL-17A.ConclusionDPMSC-CM can augment the carcinogenic properties of oral cancer, breast cancer, and melanoma cells, further animal model studies are required to validate our in-vitro findings.  相似文献   

11.
Pemetrexed (Pem) is a novel antimetabolite type of anticancer drug that demonstrated promising clinical activity in a wide variety of solid tumors, including non‐small cell lung carcinoma and malignant pleural mesothelioma. It inhibits enzymes involved in the folate pathway, for which the presence of its free carboxylic groups is necessary. The heteroaromatic ring system of Pem has a modifiable amino group, which opens a possibility to apply a new strategy to conjugate Pem to carrier molecules. Considering this as well as the necessity of untouched carboxylic groups of Pem in the new conjugates, we developed a new synthesis strategy. Here, we describe the synthesis and the characterization of new Pem‐peptide conjugates in which cell‐penetrating octaarginine or/and lung‐targeting H‐Ile‐Glu‐Leu‐Leu‐Gln‐Ala‐Arg‐NH2 peptide is attached to the drug by thioether bond. The conjugates characterized by RP‐HPLC and MS exhibited cytostatic effect in vitro on non‐small cell lung carcinoma as well as on human leukemia cell lines. The IC50 values of the conjugates were similar, but the conjugates with H‐Ile‐Glu‐Leu‐Leu‐Gln‐Ala‐Arg‐NH2 sequence were slightly more effective. Our data show that the in vitro cytostatic effect of the free Pem was essentially maintained after conjugation with cell‐penetrating or cell‐targeting peptides. Thus, the conjugation strategy reported could lead to the development of a new generation of active Pem conjugates. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.

Background

The Maillard reaction is a chemical reaction occurring between a reducing sugar and an amino acid, generally requiring thermal processing. Maillard reaction products (MRPs) have antioxidant, antimutagenic, and antibacterial effects though 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242), a fructose-tyrosine MRP, appears to inhibit proliferation of cancer cells, its mechanism of action has not been studied in detail. The purpose of this study was to investigate the anti-proliferative effects of 2,4-bis (p-hydroxyphenyl)-2-butenal (HPB242) on two oral squamous cell carcinoma (OSCC) cell lines, HN22 and HSC4, through regulation of specificity protein 1 (Sp1).

Results

HPB242 treatment dramatically reduced the cell growth rate and apoptotic cell morphologies. Sp1 was significantly inhibited by HPB242 in a dose-dependent manner. Furthermore, cell cycle regulating proteins and anti-apoptotic proteins, which are known as Sp1 target genes, were altered at the molecular levels. The key important regulators in the cell cycle such as p27 were increased, whereas cell proliferation- and survival-related proteins such as cyclin D1, myeloid leukemia sequence 1 (Mcl-1) and survivin were significantly decreased by HPB242 or suppressed Sp1 levels, however pro-apoptotic proteins caspase3 and PARP were cleaved in HN22 and HSC4.

Conclusions

HPB242 may be useful as a chemotherapeutic agent for OSCC for the purpose of treatment and prevention of oral cancer and for the improvement of clinical outcomes.  相似文献   

13.
14.
Twenty patients with oral squamous cell carcinoma having mainly stage II or III lesions without distant metastasis, were treated with tegafur and streptococcal agent, OK-432, in combination with radiotherapy. As a consequence, 16 cases among the treated 20 cases showed complete remission by this therapy alone. Especially, we have found that the squamous cell carcinoma arising in non-keratinizing oral epithelium rather than in keratinizing oral epithelium has better response to this therapy. Among the 16 cases with complete remission (CR) by the current therapy, 10 cases were histopathologically diagnosed as well-differentiated squamous cell carcinoma and six cases as moderately differentiated squamous cell carcinoma. When we examined immunohistochemically the expres-sion of various antigens such as proliferating cell nuclear antigen (PCNA), p53 and LeY or the presence of DNA fragmentation by nick-end labelling in the biopsy materials taken at the first visit to our clinic from 20 patients treated with the current therapy, the CR group showed a significantly increased LeY expres-sion level ( p< 0.05) and DNA fragmentation rate ( p< 0.05) as compared with the partial response (PR, n= 3) + no change (NC, n= 1) group. On the other hand, the CR group with respect to PCNA expression level was significantly decreased as compared with the PR + NC group ( p< 0.05). From these findings, it can be considered that the therapy for oral squamous cell carcinoma by UFT and OK-432 in combination with radiotherapy is very effective, which may be associated with differentiation or apoptosis in oral squamous carcinoma cells. In addition, we present the clinical findings and results of immunohistochemical staining for the biopsy materials obtained from four CR cases treated with the current therapeutic method.  相似文献   

15.
Intracellular pH (pHi) plays an important role in anticancer drug accumulation in cancer cells. Resistant cells often express membrane P-glycoprotein responsible for active drug extrusion and participating in increased pHi. In the present paper, we report on the influence of Na+/H+-exchanger inhibitor, 5'-(N,N-dimethyl)-amiloride (AMI), on the cytotoxic effects of doxorubicin (DOXO) and vincristine (VCR) in the parental CEM, and resistant CEM/DNR and CEM/VCR cell lines. The obtained results revealed a potentiating effect of AMI to both anticancer drugs in parental CEM line. However, AMI did not significantly potentiate the effect of DOXO or VCR in resistant CEM cell lines. We conclude, that inhibition of Na+/H+-exchanger by AMI is not sufficient for reversal of drug resistance in the tested CEM/DNR and CEM/VCR cell lines and the possible change in pHi does not affect the mechanisms of cell resistance.  相似文献   

16.
17.
In many cancer cell lines, including breast, prostate, lung, brain, head and neck, retina, and the gastrointestinal tract, opioids decrease cell proliferation in a dose-dependent and reversible manner. Opioid and/ or other neuropeptide receptors mediate this decrease. We report that only the steroid-hormone-sensitive cell lines MCF7 and T47D respond to opioid growth inhibition in a dose-dependent manner. Therefore, an interaction of the opioid and steroid receptor system might exist, as is the case with insulin. To investigate this interaction, we have assayed two estrogen-inducible proteins (pS2 and the lysosomal enzyme cathepsin D) in MCF7 and T47D cells. When cells were grown in the presence of FBS (in which case a minimal quantity of estrogens and/ or opioids is provided by the serum), we observed either no effect of etorphine or ethylketocyclazocine (EKC) or an increase of secretion and/ or production of pS2 and cathepsin D. However, when cells were cultured in charcoal-stripped serum and in the absence of phenol red, the effect of the two opioids is different: EKC decreased the production and/ or secretion of pS2 and cathepsin D, whereas etorphine increased their synthesis and/ or secretion. The differential effect of the two general opioids was attributed to their different receptor selectivity. Furthermore, the variations of the ratio of secreted/ produced protein and the use of cycloheximide indicate that opioids selectively modify the regulatory pathway of each protein discretely. In conclusion, through the interaction with opioid and perhaps other membrane-receptor sites, opioid agonists modify in a dose-dependent manner the production and the secretion of two estrogen-regulated proteins. Opioids may therefore disturb hormonal signals mediated by the estrogen receptors. Hence, these chemicals may have potential endocrine disrupting activities. J. Cell. Biochem. 71:416–428, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The structure of 4-methylumbelliferone (MU) consists of coumarin with 4-methyl group and 7-hydroxy group. MU inhibits HA synthesis and pericellular HA matrix formation. In this study, we used 10 MU derivatives which have hydroxy groups and methyl groups at various positions of coumarin to investigate a more effective HA inhibitor than MU. First, human pancreatic cancer cell (KP1-NL) growth assay was analyzed by Alamar Blue to determine the non-toxic concentration of MU derivatives, and the inhibitory effect on HA synthesis in the cell cultures was analyzed by HA measuring kit. Next, cell surfaces of cancer cells were analyzed by particle-exclusion assay. In conclusion, both hydroxy and methyl groups are necessary for HA inhibition by MU, and two hydroxy groups inhibited HA synthesis more strongly than MU.  相似文献   

19.
The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one‐dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease‐encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin‐like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin‐like gene McSP34. The expression of the trypsin‐like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources. Published 2010 Wiley Periodicals, Inc.  相似文献   

20.
Epidemiological evidence has shown two polymorphisms (namely RS#1800468G > A and RS#1800471G > C) of transforming growth factor-beta 1 (TGF-β1) gene may be involved in the cancer development. However, their role in the carcinogenic process of esophageal squamous cell carcinoma (ESCC) has been less well elaborated. We conducted a hospital-based case-control study including 391 ESCC cases and 508 controls without any evidence of tumors to evaluate the association between these two polymorphisms and ESCC risk and prognosis for Zhuangese population by means of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system (ARMS)-PCR techniques. We found that individuals with the genotypes with RS#1800471 C allele (namely RS#1800471-GC or -CC) had an increased risk of ESCC than those without above genotypes (namely RS#1800471-GG, adjusted odds ratio 3.26 and 5.65, respectively). Further stratification analysis showed that this polymorphism was correlated with tumor histological grades and TNM (tumor, node, and metastasis) stage, and modified the serum levels of TGF-β1. Additionally, RS#1800471 polymorphism affected ESCC prognosis (hazard ratio, 3.40), especially under high serum levels of TGF-β1 conditions. However, RS#1800468 polymorphism was not significantly related to ESCC risk. These findings indicated that TGF-β1 RS#1800471G > C polymorphism may be a genetic modifier for developing ESCC in Zhuangese population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号