首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unfolded states of three homologous proteins with a very similar fold have been investigated by heteronuclear NMR spectroscopy. Secondary structure propensities as derived from interpretation of chemical shifts and motional restrictions as evidenced by heteronuclear (15)N relaxation rates have been analyzed in the reduced unfolded states of hen lysozyme and the calcium-binding proteins bovine alpha-lactalbumin and human alpha-lactalbumin. For all three proteins, significant deviations from random-coil predictions can be identified; in addition, the unfolded states also differ from each other, despite the fact that they possess very similar structures in their native states. Deviations from random-coil motional properties are observed in the alpha- and the beta-domain in bovine alpha-lactalbumin and lysozyme, while only regions within the alpha-domain deviate in human alpha-lactalbumin. The motional restrictions and residual secondary structure are determined both by the amino acid sequence of the protein and by residual long-range interactions. Even a conservative single point mutation from I to L in a highly conserved region between the two alpha-lactalbumins results in considerable differences in the motional properties. Given the differences in oxidative folding between hen lysozyme and alpha-lactalbumin, the results obtained on the unfolded states suggest that residual long-range interactions, i.e., those between the alpha- and the beta-domain of lysozyme, may act as nucleation sites for protein folding, while this property of residual structure is replaced by the calcium-binding site between the domains in alpha-lactalbumin.  相似文献   

2.
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds.  相似文献   

3.
Obtaining detailed structural models of disordered states of proteins under nondenaturing conditions is important for a better understanding of both functional intrinsically disordered proteins and unfolded states of folded proteins. Extensive experimental characterization of the drk N-terminal SH3 domain unfolded state has shown that, although it appears to be highly disordered, it possesses significant nonrandom secondary and tertiary structure. In our previous attempts to generate structural models of the unfolded state using the program ENSEMBLE, we were limited by insufficient experimental restraints and conformational sampling. In this study, we have vastly expanded our experimental restraint set to include 1H-15N residual dipolar couplings, small-angle X-ray scattering measurements, nitroxide paramagnetic relaxation enhancements, O2-induced 13C paramagnetic shifts, hydrogen-exchange protection factors, and 15N R2 data, in addition to the previously used nuclear Overhauser effects, amino terminal Cu2+-Ni2+ binding paramagnetic relaxation enhancements, J-couplings, chemical shifts, hydrodynamic radius, and solvent accessibility restraints. We have also implemented a new ensemble calculation methodology that uses iterative conformational sampling and seeks to calculate the simplest possible ensemble models. As a result, we can now generate ensembles that are consistent with much larger experimental data sets than was previously possible. Although highly heterogeneous and having broad molecular size distributions, the calculated drk N-terminal SH3 domain unfolded-state ensembles have very different properties than expected for random or statistical coils and possess significant nonnative α-helical structure and both native-like and nonnative tertiary structure.  相似文献   

4.
The dynamic aspect of proteins is fundamental to understanding protein stability and function. One of the goals of NMR studies of side-chain dynamics in proteins is to relate spin relaxation rates to discrete conformational states and the timescales of interconversion between those states. Reported here is a physical analysis of side-chain dynamics that occur on a timescale commensurate with monitoring by 2H spin relaxation within methyl groups. Motivated by observations made from tens-of-nanoseconds long MD simulations on the small protein eglin c in explicit solvent, we propose a simple molecular mechanics-based model for the motions of side-chain methyl groups. By using a Boltzmann distribution within rotamers, and by considering the transitions between different rotamer states, the model semi-quantitatively correlates the population of rotamer states with ‘model-free’ order parameters typically fitted from NMR relaxation experiments. Two easy-to-use, analytical expressions are given for converting S2axis’ values (order parameter for C–CH3 bond) into side-chain rotamer populations. These predict that S2axis’ values below 0.8 result from population of more than one rotameric state. The relations are shown to predict rotameric sampling with reasonable accuracy on the ps–ns timescale for eglin c and are validated for longer timescales on ubiquitin, for which side-chain residual dipolar coupling (RDC) data have been collected.  相似文献   

5.
The characterization of residual structures persistent in unfolded proteins in concentrated denaturant solution is currently an important issue in studies of protein folding because the residual structure present, if any, in the unfolded state may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the hydrogen/deuterium (H/D)-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride. We employed a dimethylsulfoxide (DMSO)-quenched H/D-exchange NMR technique with the use of spin desalting columns, which allowed us to perform a quick medium exchange from 6 M guanidinium chloride to a quenching DMSO solution. Based on the backbone resonance assignment of ubiquitin in the DMSO solution, we successfully investigated the H/D-exchange kinetics of 60 identified peptide amide groups in the ubiquitin sequence. Although a majority of these amide groups were not protected, certain amide groups involved in a middle helix (residues 23–34) and an N-terminal β-hairpin (residues 2–16) were significantly protected with a protection factor of 2.1–4.2, indicating that there were residual structures in unfolded ubiquitin and that these amide groups were more than 52% hydrogen bonded in the residual structures. We show that the hydrogen-bonded residual structures in the α-helix and the β-hairpin are formed even in 6 M guanidinium chloride, suggesting that these residual structures may function as a folding initiation site to guide the subsequent folding reactions of ubiquitin.  相似文献   

6.
Understanding protein stability requires characterization of structural determinants of the folded and unfolded states. Many proteins are capable of populating partially folded states under specific solution conditions. Occasionally, coexistence of the folded and an unfolded state under non- or mildly denaturing conditions can be observed by NMR, allowing us to structurally probe these states under identical conditions. Here we report on a destabilized mutant of the B1 domain of protein G (GB1) whose equilibrium unfolding was systematically investigated. Backbone amide residual dipolar couplings (RDCs), the tryptophan Nepsilon-H resonance and the amide nitrogen transverse relaxation rates (R2s) for varying pH values and different temperatures were measured. The backbone amide RDCs indicate that prior to complete unfolding, two melting hot spots are formed at the turn around T11, L12 and K13 and the N terminus of the helix at A24 and T25. The RDCs for the low pH, thermally unfolded state of GB1 are very small and do not indicate the presence of any native-like structure. Amide nitrogen transverse relaxation rates for GB1 in the folded state at different temperatures exhibit large contributions from exchange processes and the associated dynamics display considerable heterogeneity. Our data provide clear evidence for intermediate conformations and multi-state equilibrium un/folding for this GB1 variant.  相似文献   

7.
Many proteins form amyloid-like fibrils in vitro under partially or highly unfolding conditions. Recently, we showed that the residual structure in highly unfolded state is closely related to amyloid fibril formation in hen lysozyme. Thus, to better understand the role of the residual structure on amyloid fibril formation, we focused on AL amyloidosis, which results from the extracellular deposition of monoclonal immunoglobulin light-chain variable domains (VLs) as insoluble fibrils. We examined the relationship between the residual structure and amyloid fibril formation on three λ6 recombinant VL (rVλ6) proteins, wild type, Jto, and Wil. Although rVλ6 proteins are highly unfolded in pH 2, 15N NMR transverse relaxation experiments revealed nonrandom structures in regions, which include some hydrophobic residues and a single disulfide bond, indicating the existence of residual structure in rVλ6 proteins. However, the residual structure of Wil was markedly disrupted compared with those of the other proteins, despite there being no significant differences in amino acid sequences. Fibrillation experiments revealed that Wil had a longer lag time for fibril formation than the others. When the single disulfide bond was reduced and alkylated, the residual structure was largely disrupted and fibril formation was delayed in all three rVλ6 proteins. It was suggested that the residual structure in highly unfolded state has a crucial role in amyloid fibril formation in many proteins, even pathogenic ones.  相似文献   

8.
The ubiquitin ligase CHIP catalyzes covalent attachment of ubiquitin to unfolded proteins chaperoned by the heat shock proteins Hsp70/Hsc70 and Hsp90. CHIP interacts with Hsp70/Hsc70 and Hsp90 by binding of a C-terminal IEEVD motif found in Hsp70/Hsc70 and Hsp90 to the tetratricopeptide repeat (TPR) domain of CHIP. Although recruitment of heat shock proteins to CHIP via interaction with the CHIP-TPR domain is well established, alterations in structure and dynamics of CHIP upon binding are not well understood. In particular, the absence of a structure for CHIP-TPR in the free form presents a significant limitation upon studies seeking to rationally design inhibitors that may disrupt interactions between CHIP and heat shock proteins. Here we report the 1H, 13C, and 15N backbone and side chain chemical shift assignments for CHIP-TPR in the free form, and backbone chemical shift assignments for CHIP-TPR in the IEEVD-bound form. The NMR resonance assignments will enable further studies examining the roles of dynamics and structure in regulating interactions between CHIP and the heat shock proteins Hsp70/Hsc70 and Hsp90.  相似文献   

9.
Identification and characterization of ensembles of intermediate states remains an important objective in describing protein folding in atomic detail. The 67-residue villin headpiece, HP67, consists of an N-terminal subdomain (residues 10–42) that transiently unfolds at equilibrium under native-like conditions and a highly stable C-terminal subdomain (residues 43–76). The transition between folded and unfolded states of the N-terminal domain has been characterized previously by 15N NMR relaxation dispersion measurements (Grey et al. in J Mol Biol 355:1078, 2006). In the present work, 13C spin relaxation was used to further characterize backbone and hydrophobic core contributions to the unfolding process. Relaxation of 13Cα spins was measured using the Hahn echo technique at five static magnetic fields (11.7, 14.1, 16.4, 18.8, and 21.1 T) and the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion method at a static magnetic field of 14.1 T. Relaxation of methyl 13C spins was measured using CPMG relaxation dispersion experiments at static magnetic fields of 14.1 and 18.8 T. Results for 13C and 15N spins yielded a consistent model in which the partially unfolded intermediate state of the N-terminal subdomain maintains residual structure for residues near the unprotonated His41 imidazole ring and in the interface between the N- and C-terminal subdomains. In addition, a second faster process was detected that appears to represent local dynamics within the folded state of the molecule and is largely confined to the hydrophobic interface between the N- and C-terminal subdomains.  相似文献   

10.
A spectral density model based on a truncated lorentzian distribution of correlation times is used to analyze the nanosecond time-scale dynamics of the partially unfolded domain 2 of annexin I from its (15)N NMR relaxation parameters measured at three magnetic field strengths. The use of a distribution of correlation times enables the characterization of the dynamical features of the NH bonds of the protein in terms of heterogeneity of dynamical states in the nanosecond range. The variation along the sequence of the two dynamical parameters introduced, namely the center and the width of the distribution, points out the different types of residual secondary structures present in the D2 domain. Moreover, it allows a physically sensible interpretation of the dynamical behavior of the different residual helices and of the non-native structures. Also, a striking correspondence is found between the parameters obtained using an extended Lipari and Szabo model and the parameters obtained using the distribution of correlation times. This result led us to propose a specific interpretation of the model-free order parameter for internal motions in the nanosecond range in the case of unfolded states.  相似文献   

11.
We report a high resolution NMR structure and 15N relaxation studies of the first catalytic cysteine half-domain (FCCH) of the mouse ubiquitin-activating enzyme E1, together with interaction studies of FCCH and the other catalytic E1 subdomain – SCCH (second catalytic cysteine half-domain). In solution, mouse FCCH forms a well-defined six-stranded antiparallel β-barrel structure, a common fold for many proteins with a variety of cellular functions. 15N relaxation data reveal FCCH complex backbone dynamics and indicate which residues experience slow intramolecular motions. Some of these residues make contacts with the polar face of ubiquitin in the co-crystal structure of yeast E1 and ubiquitin. However, the titration of FCCH with ubiquitin does not show any visible chemical shift changes in the 2D 1H/15N HSQC spectra of the FCCH. The 2D 1H/15N HSQC experiments performed both for each catalytic half-domain individually and for their equimolar mixture in the milimolar concentration range display no detectable chemical shift perturbation, suggesting a lack of interaction between the two subdomains unless they are covalently linked via the adenylation domain.  相似文献   

12.
Folded proteins can access aggregation-prone states without the need for transitions that cross the energy barriers for unfolding. In this study we characterized the initial steps of aggregation from a native-like state of the acylphosphatase from Sulfolobus solfataricus (Sso AcP). Using computer simulations restrained by experimental hydrogen/deuterium (H/D) exchange data, we provide direct evidence that under aggregation-promoting conditions Sso AcP populates a conformational ensemble in which native-like structure is retained throughout the sequence in the absence of local unfolding (N1), although the protein exhibits an increase in hydrodynamic radius and dynamics. This transition leads an edge strand to experience an increased affinity for a specific unfolded segment of the protein. Direct measurements by means of H/D exchange rates, isothermal titration calorimetry, and intermolecular relaxation enhancements show that after formation of N1, an intermolecular interaction with an antiparallel arrangement is established between the edge strand and the unfolded segment of the protein. However, under conditions that favor the fully native state of Sso AcP, such an interaction is not established. Thus, these results reveal a novel (to our knowledge) self-assembly mechanism for a folded protein that is based on the increased flexibility of highly aggregation-prone segments in the absence of local unfolding.  相似文献   

13.
Paramagnetic relaxation enhancement (PRE) is a powerful technique for studying transient tertiary organizations of unfolded and partially folded proteins. The heterogeneous and dynamic nature of disordered protein states, together with the r−6 dependence of PRE, presents significant challenges for reliable structural interpretation of PRE-derived distances. Without additional knowledge of accessible conformational substates, ensemble-simulation-based protocols have been used to calculate structure ensembles that appear to be consistent with the PRE distance restraints imposed on the ensemble level with the proper r−6 weighting. However, rigorous assessment of the reliability of such protocols has been difficult without intimate knowledge of the true nature of disordered protein states. Here we utilize sets of theoretical PRE distances derived from simulated structure ensembles that represent the folded, partially folded and unfolded states of a small protein to investigate the efficacy of ensemble-simulation-based structural interpretation of PRE distances. The results confirm a critical limitation that, due to r−6 weighting, only one or a few members need to satisfy the distance restraints and the rest of the ensemble are essentially unrestrained. Consequently, calculated structure ensembles will appear artificially heterogeneous no matter whether the PRE distances are derived from the folded, partially unfolded or unfolded state. Furthermore, the nature of the heterogeneous ensembles is largely determined by the protein model employed in structure calculation and reflects little on the true nature of the underlying disordered state. These findings suggest that PRE measurements on disordered protein states alone generally do not contain enough information for a reliable structural interpretation and that the latter will require additional knowledge of accessible conformational substates. Interestingly, when a very large number of PRE measurements is available, faithful structural interpretation might be possible with intermediate ensemble sizes under ideal conditions.  相似文献   

14.
A growing class of proteins in biological processes has been found to be unfolded on isolation under normal solution conditions. We have used NMR spectroscopy to characterize the structural and dynamic properties of the unfolded and partially folded states of a 52-residue alanine-rich protein (Ala-14) at temperatures from -5 degrees C to 40 degrees C. At 40 degrees C, alanine residues in Ala-14 adopt phi and psi angles, consistent with a significant ensemble population of polyproline II conformation. Analysis of relaxation rates in the protein reveals that a series of residues, Gln 35-Ala 36-Ala 37-Lys 38-Asp 39-Asp 40-Ala 41-Ala 42, displays slow motional dynamics at both -5 degrees C and 40 degrees C. Temperature-dependent chemical shift changes indicate that this region is the site of helix initiation. The remaining N-terminal residues become increasingly dynamic as they extend from the nucleation site. The C terminus remains dynamic and changes less with temperature, indicating it is relatively unstructured. Ala-14 provides a high-resolution portrait of the unfolded state and the process of helix nucleation and propagation in the absence of tertiary contacts, information that bears on early events in protein folding.  相似文献   

15.
The dynamics of the natively unfolded form of the pro-peptide of subtilisin (PPS) have been characterized at two different pHs (6.0 and 3.0) by 15N relaxation experiments. 15N relaxation data is obtained at multiple field strengths and a detailed comparison of spectral density mapping, the model free approach and the recently proposed Cole–Cole model free (CC-MF) analysis is presented. The CC-MF analysis provides a better fit to the observed magnetic field dependence of 15N relaxation data of unfolded PPS than conventional model free approaches and shows that fluctuations in R2 may be accounted for by a distribution of correlation times on the nanosecond timescale. A new parameter derives from the analysis and represents the width of the distribution function and the heterogeneity of the dynamics on the nanosecond timescale at a particular site. Particularly interesting is the observation that is sensitive to pH changes and that PPS samples a wider distribution of nanosecond time scale motions at less acidic pHs than at more acidic pHs. These results suggest that PPS experiences a higher degree of correlated motion at pH 6.0 and that electrostatic interactions may be important for inducing correlated motions on the nanosecond timescale in unfolded PPS.  相似文献   

16.
The functions of proteins depend on the dynamical behavior of their native states on a wide range of timescales. To investigate these dynamics in the case of the small protein Gβ1, we analyzed molecular dynamics simulations with the model-free approach of nuclear magnetic relaxation. We found amplitudes of fast timescale motions (sub-τc, where τc is the rotational correlation time) consistent with S2 obtained from spin relaxation measurements as well as amplitudes of slow timescale motions (supra-τc) in quantitative agreement with S2 order parameters derived from residual dipolar coupling measurements. The slow timescale motions are associated with the large variations of the 3J couplings that follow transitions between different conformational substates. These results provide further characterization of the large structural fluctuations in the native states of proteins that occur on timescales longer than the rotational correlation time.  相似文献   

17.
In-cell NMR is an application of solution NMR that enables the investigation of protein conformations inside living cells. We have measured in-cell NMR spectra in oocytes from the African clawed frog Xenopus laevis. 15N-labeled ubiquitin, its derivatives and calmodulin were injected into Xenopus oocytes and two-dimensional 1H–15N correlation spectra of the proteins were obtained. While the spectrum of wild-type ubiquitin in oocytes had rather fewer cross-peaks compared to its in vitro spectrum, ubiquitin derivatives that are presumably unable to bind to ubiquitin-interacting proteins gave a markedly larger number of cross-peaks. This observation suggests that protein–protein interactions between ubiquitin and ubiquitin-interacting proteins may cause NMR signal broadening, and hence spoil the quality of the in-cell HSQC spectra. In addition, we observed the maturation of ubiquitin precursor derivative in living oocytes using the in-cell NMR technique. This process was partly inhibited by pre-addition of ubiquitin aldehyde, a specific inhibitor for ubiquitin C-terminal hydrolase (UCH). Our work demonstrates the potential usefulness of in-cell NMR with Xenopus oocytes for the investigation of protein conformations and functions under intracellular environmental conditions.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

18.
Shi Z  Chen K  Liu Z  Sosnick TR  Kallenbach NR 《Proteins》2006,63(2):312-321
A great deal of attention has been paid lately to the structures in unfolded proteins due to the recent discovery of many biologically functional but natively unfolded proteins and the far-reaching implications of order in unfolded states for protein folding. Recently, studies on oligo-Ala, oligo-Lys, oligo-Asp, and oligo-Glu, as well as oligo-Pro, have indicated that the left-handed polyproline II (PII) is the major local structure in these short peptides. Here, we show by NMR and CD studies that ubiquitin fragments, model unfolded peptides composed of nonrepeating amino acids, and four alanine-rich peptides containing QQQ, SSS, FFF, and VVV sequences are all present in aqueous solution predominantly in the extended PII or beta conformation. The results from this and related studies indicate that PII might be a major backbone conformation in unfolded proteins. The presence of defined local backbone structure in unfolded proteins is inconsistent with predictions from random coil models.  相似文献   

19.
The N-terminal regions of the members of Src family of non-receptor protein tyrosine kinases are intrinsically unfolded and contain the maximum sequence divergence among them. In this study, we have addressed the structural characterization by nuclear magnetic resonance of this region of 84 residues that encompasses the SH4 and the unique domains (USrc) of the human c-Src. With this aim, the backbone assignment was performed using 13C-detected experiments that overcome the spectral resolution problems and the large number of prolines that are typical for intrinsically unfolded proteins. The analysis of the residual dipolar couplings measured for the USrc indicates the presence of a low populated helical structure in the 60-75 region. No long-range contacts between remote fragments of the chain were detected with paramagnetic relaxation enhancement experiments. The structural characterization was extended to two different phosphorylation states of USrc that encompassed three different phosphorylated sites, Ser17, Thr37, and Ser75. The structural and conformational changes upon phosphorylation were monitored through chemical shift perturbations and residual dipolar couplings, indicating that modifications occur at local level and no global rearrangements were apparent. These results suggest a scenario where phosphorylation induces a global electrostatic perturbation that could be involved in the membrane unbinding of c-Src and that could be related with the localization of the enzyme. These observations suggest the unique domain of Src kinases as a source of selectivity and reinforce the relevant role of intrinsically disordered proteins in biological processes.  相似文献   

20.
Vibrational Raman optical activity (ROA), measured as a small difference in the intensity of Raman scattering from chiral molecules in right- and left-circularly polarized incident light, or as the intensity of a small circularly polarized component in the scattered light, is a powerful probe of the aqueous solution structure of proteins. The large number of structure-sensitive bands in protein ROA spectra makes multivariate analysis techniques such as nonlinear mapping (NLM) especially favorable for determining structural relationships between different proteins. We have previously used NLM to map a large dataset of peptide, protein, and virus ROA spectra into a readily visualizable two-dimensional space in which points close to or distant from each other, respectively, represent similar or dissimilar structures. As well as folded proteins, our dataset contains ROA spectra from many natively unfolded proteins, proteins containing both folded and unfolded domains, denatured partially structured molten globule and reduced protein states, together with folded proteins containing little or no alpha-helix or beta-sheet. In this article, the relative positions of these systems in the NLM plot are used to obtain information about any residual structure that they may contain. The striking differences between the structural propensities of proteins that are unfolded in their native states and those that are unfolded due to denaturation may be responsible for their often very different behavior, especially with regard to aggregation. An ab initio simulation of the Raman and ROA spectra of an alanine oligopeptide in the poly(L-proline) II-helical conformation confirms previous suggestions that this conformation is a significant structural element in disordered peptides and natively unfolded proteins. The use of ROA to identify and characterize proteins containing significant amounts of unfolded structure will, inter alia, be valuable in structural genomics/proteomics since unfolded sequences often inhibit crystallization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号