首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
3,4-Anhydro-1,2-O-isopropylidene-beta-D-tagatopyranose (8) and 4,5-anhydro-1,2-O-isopropylidene-beta-D-fructopyranose (10) have been prepared by treatment of 3,5-di-O-acetyl-1,2-O- isopropylidene-4-O-toluene-p-sulfonyl-beta-D-fructopyranose with methanolic sodium methoxide. The structures of 8 and 10 were assigned by 1H and 13C NMR spectroscopy and that of 10 by X-ray crystallography; both exist in half-chair conformations. Compounds 8 and 10 interconvert in aqueous sodium hydroxide, giving a ratio of 1:2 at equilibrium. The monoacetates of 8 and 10 (5-O-acetyl-3,4-anhydro-1,2-O-isopropylidene-beta-D-tagatopyranose and 3-O-acetyl-4,5-anhydro-1,2-O-isopropylidene-beta-D-fructopyranose) undergo stereospecific epoxide ring opening in 80% acetic acid to give mainly the axial monoacetates 5-O-acetyl-1,2-O-isopropylidene-beta-D-fructopyranose and 4-O-acetyl-1,2-O-isopropylidene-beta-D-tagatopyranose, respectively.  相似文献   

2.
Displacement of the tosyloxy group in 5-O-benzyl-1,2-O-isopropylidene-4-O-(p-toluenesulfonyl)-alpha-D-glucoseptanose has yielded derivatives of 1,2-O-isopropylidene-alpha-D-galactoseptanose. Acid catalysed acetonation then gave 1,2:3,4-di-O-isopropylidene-alpha-D-galactoseptanose or 1,2;4,5-di-O-isopropylidene-alpha-D-galactoseptanose using lower acid concentrations. Reduction of the ketone derived from 1,2:3,4-O-isopropylidene-alpha-D-septanose gave 1,2;3,4-di-O-isopropylidene-beta-L-altroseptanose. Reaction of 3,4-anhydro-5-O-benzyl-1,2-O-isopropylidene-alpha-D-galactoseptanose with sodium methoxide gave 5-O-benzyl-1,2-O-isopropylidene-4-O-methyl-alpha-D-glucoseptanose and 5-O-benzyl-1,2-O-isopropylidene-3-O-methyl-alpha-D-guloseptanose. Solution-state conformations of these compounds have been deduced from their 1H NMR spectra.  相似文献   

3.
1,2,5-Tri-O-acetyl-3,6-anhydro-3-thio-D-glucofuranose was synthesised starting from D-glucose and was used as a donor for the glycosidation of 4-cyano- and 4-nitrobenzenethiol. In the latter reaction, besides an anomeric mixture of the 4-nitrophenyl 2,5-di-O-acetyl-3,6-anhydro-1,3-dithio-D-glucofuranosides, the corresponding 2,6-anhydro-1,2-dithio-D-altrofuranosides were also obtained, formed via a rearrangement of the sugar moiety. A similar rearrangement could be observed during the hydrolysis of the glycosidic bond of methyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-alpha-D-glucopyranoside with aqueous trifluoroacetic acid, affording after acetylation besides 1-O-acetyl-3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-alpha-D-glucopyranose (32alpha), 1,1,5-tri-O-acetyl-3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-D-glucose, methyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-beta-D-glucopyranoside and 1,5-di-O-acetyl-2,6-anhydro-3-O-(4-nitrobenzoyl)-2-thio-alpha-D-altrofuranose (40). Glycosidation of 4-cyanobenzethiol with 32alpha in the presence of trimethylsilyl triflate as promoter afforded 4-cyanophenyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-1,3-dithio-beta-D-glucopyranoside as a minor component only, besides 4-cyanophenyl 3,6-anhydro-2-S-(4-cyanophenyl)-4-O-(4-nitrobenzoyl)-1,2,3-trithio-beta-D-glucopyranoside. When boron trifluoride etherate was used as promoter in the reaction of 32alpha with 4-cyano- and 4-nitrobenzenethiol, the corresponding beta-thioglycosides were obtained, while 40 gave under identical conditions the alpha anomers exclusively. All thioglycosides obtained after deacylation were submitted to biological evaluation. Among these glycosides, the 4-cyanophenyl 3,6-thioanhydro-1,3-dithio-D-glucofuranoside possessed the strongest oral antithrombotic effect.  相似文献   

4.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

5.
2,5-Anhydro-3,4-di-O-benzyl-D-mannitol was glycosylated using different donors such as tetra-O-acetyl-alpha-D-glucopyranosyl bromide in the presence of Hg(CN)(2), the corresponding beta-thiophenylglycoside in the presence of NIS and TfOH as well as the alpha- and beta-trichloroimidate with TMSOTf as promoter. The resulting mixtures were analyzed by HPLC and the following main components were isolated and characterized: 2,5-anhydro-3,4-di-O-benzyl-1-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-d-mannitol; 6-O-acetyl-2,5-anhydro-3,4-di-O-benzyl-1-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol; 2,5-anhydro-3,4-di-O-benzyl-1,6-bis-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol; 2,5-anhydro-3,4-di-O-benzyl-1-O-[-2-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-3,4,6-tri-O-acetyl-beta-D-glucopyranosyl]-6-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol and 2,5-anhydro-3,4-di-O-benzyl-1,6-bis-O-(3,4,6-tri-O-acetyl-1,2-O-ethylidene-2'-yl-alpha-D-glucopyranosyl)-D-mannitol. The latter compound representing a bis-orthoester might be a common intermediate in all the investigated reactions, as its rearrangement and/or decomposition can yield all of the isolated compounds.  相似文献   

6.
The synthesis and conformational studies of (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-allo-inositol and (+/-)-3-O-acetyl-1,2:4,5-di-O-isopropylidene-6-O-methyl-allo-inositol are described. Solid state conformations of the title compounds have been studied by solving their X-ray crystal structures. The inositol ring in both the compounds deviate considerably from the ideal chair conformation to flattened chair conformation in the solid state. Their conformations in solution were studied by the use of 1H NMR spectroscopy. These conformational analyses revealed that the title compounds adopt similar conformations in solid and solution states irrespective of the solvent polarity.  相似文献   

7.
Starting from 1,2,4-tri-O-acetyl-3,6-anhydro-alpha-d-galactopyranose, 4-O-acetyl-3,6-anhydro-1,2-O-(1-cyanoethylidene)-alpha-d-galactopyranose (7) was synthesized by treatment with cyanotrimethylsilane. Additionally, 3,4-di-O-acetyl-1,2-O-(1-cyanoethylidene)-6-O-tosyl-alpha-d-galactopyranose was prepared from the corresponding bromide and both cyanoethylidene derivatives were used as donors in glycosylation reactions. The coupling with benzyl 2,4,6-tri-O-acetyl-3-O-trityl-beta-d-galactopyranoside provided exclusively the beta-linked disaccharides in approximately 30% yield. The more reactive methyl 2,3-O-isopropylidene-4-O-trityl-alpha-l-rhamnopyranoside gave with donors 3 and 7 the corresponding disaccharides in nearly 60% yield. Furthermore, the synthesis of 3,6-anhydro-4-O-trityl-1,2-O-[1-(endo-cyano)ethylidene]-alpha-d-galactopyranose, which can be used as a monomer for polycondensation reaction is described.  相似文献   

8.
Methyl 3,5-anhydro-alpha-D-xylofuranosides are obtained by use of the Mitsunobu reaction from 2-O-protected methyl alpha-D-xylofuranosides, which are easily prepared from D-xylose. The Mitsunobu reaction of methyl 3-N-benzylamino-3-deoxy- and 3-azido-3-deoxyarabinofuranosides, which are prepared from the conveniently available methyl 2,3-anhydro-alpha-D- and 2,3-anhydro-alpha-l-lyxofuranosides by nucleophilic ring opening, yields the corresponding methyl 2,5-anhydro-alpha-D- and 2,5-anhydro-alpha-l-arabinofuranosides. Ring opening of 3,5-anhydro-1,2-O-isopropylidene-alpha-D-xylofuranose with azide yields the corresponding 5-azido derivative. The structure and configuration of the products is confirmed by NMR spectroscopy. 5,6-Anhydro-1,2-O-isopropylidene-alpha-D-glucofuranose is formed by the Mitsunobu reaction of 1,2-O-isopropylidene-alpha-D-glucofuranose. Its structure is verified by single-crystal X-ray diffraction analysis.  相似文献   

9.
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Reductive cleavage of fully methylated, partially O-carboxymethylated cellulose had previously been shown to produce 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-, -2-O-(methoxycarbonylmethyl)-3,6-di-O-methyl-, -3-O-(methoxycarbonylmethyl)-2,6-di-O-methyl-, -6-O-(methoxycarbonylmethyl)-2,3-di-O-methyl-, -2,3-di-O-(methoxycarbonylmethyl)-6-O-methyl-, -2,6-di-O-(methoxycarbonylmethyl)-3-O-methyl-, -3,6-di-O-(methoxycarbonylmethyl)-2-O-methyl-, and -2,3,6-tri-O-(methoxycarbonylmethyl)-D-glucitol. Described herein is the independent synthesis of these derivatives, except for the first, which had been reported. In addition, their 1H-n.m.r. spectra, chemical-ionization (NH3) mass spectra, and electronionization mass spectra are tabulated.  相似文献   

11.
Treatment of 1,6:2,5-dianhydro-3,4-di-O-methanesulfonyl-1-thio-D-glucitol in methanol with sodium hydroxide afforded 1,6:2,5:3,4-trianhydro-1-thio-allitol, 1,4:2,5-dianhydro-6-methoxy-1-thio-D-galactitol, 1,6:2,5-dianhydro-4-O-methyl-1 -thio-D-glucitol, 1 ,6:2,5-dianhydro-3-O-methanesulfonyl-1 -thio-D-glucitol and 1 ,6:2,5-dianhydro-4-deoxy-1-thio-D-erythro-hex-3-ulose (14) in 5, 4, 28, 5.5 and 41% yield, respectively. Formation of these derivatives can be explained via a common sulfonium intermediate. Reduction of 14 with sodium borohydride and subsequent acetylation afforded 3-O-acetyl-1,6:2,5-dianhydro-4-deoxy-1-thio-D-xylo-hexitol, the absolute configuration of which was proved by X-ray crystallography. The 1,6:2,5-dianhydro-1-thio-D-hexitol derivatives in which the free OH groups were protected by acetylation, methylation or mesylation were converted by a Pummerer reaction of their sulfoxides into the corresponding 1-O-acetyl hexoseptanose derivatives which were used as donors for the glycosidation of 4-cyano- and 4-nitrobenzenethiol, respectively. The Pummerer reaction of 1,6:2,5-dianhydro-4-deoxy-3-O-methyl-1-thio-D-xylo-hexitol S-oxide gave, besides 1-O-acetyl-2,5-anhydro-3-deoxy-4-O-methyl-6-thio-alpha-L- (23) and 1-O-acetyl-2,5-anhydro-4-deoxy-3-O-methyl-6-thio-alpha-D-xylo-hexoseptanose (25), 1-O-acetyl-4-deoxy-2,6-thioanhydro-D-lyxo-hexopyranose, formed in a rearrangement reaction. The same rearrangement took place, when a mixture of 23 and 25 was used as donor in the glycosidation reaction with 4-cyanobenzenethiol, applying trimethylsilyl triflate as promoter. The oral antithrombotic activity of the obtained alpha-thioglycosides was determined in rats, using Pescador's model.  相似文献   

12.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

13.
The crystal structure of 3-O-(6-O-acetyl-2,4-diazido-3-O-benzyl-2,4-dideoxy-alpha-D- glucopyranosyl)-1,6-anhydro- 2,4-diazido-2,4-dideoxy-beta-D-glucopyranose, C21H24N12O7, mol. wt. 556.5, was investigated by X-ray analysis. The disaccharide crystallizes in the triclinic space group P1, with a = 889.3(5), b = 869.6(5), and c = 999.5(6) pm, and alpha = 105.83(4) degrees, beta = 116.22(4) degrees, gamma = 88.42(4) degrees, Z = 1, and rho = 1.394 g.cm-3. Phase determination failed with direct methods, but, as the 1,6-anhydride component of the molecule was already known from a previous structure analysis, the vector-search method could be applied in solving the structure. Diffractometer data were refined to an R value of 0.063 (Rw = 0.080) for 2102 observed reflections. The anhydro-bridged system has a distorted 1C4(D) conformation, in agreement with that of other anhydropyranoses so far investigated. A comparison shows that, for the specific kind of distortion, mainly the anti-reflex effect is responsible, whereas 1,3-diaxial interactions have a minor influence. The nonbridged ring adopts an almost perfect 4C1(D) conformation. The anomeric effect is observed in both of the sugar-ring systems in terms of bond-length shortening. The disaccharide has an alpha-D-Glc-4C1-(1a----3e)-D-Glc-1C4 glycosidic linkage. No previous X-ray investigation of a compound of this type is known. The pyranoid rings are almost perpendicular to each other. The phi, psi angles of the glycosidic linkage are +78.1(5) and -86.0(4) degrees.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Regioselective monoacetylation of 2-allyloxycarbonylamino-1,6-anhydro-2-deoxy-beta-D-glucopyranose (1) gave a mixture of 3-O-acetyl and 4-O-acetyl derivatives, the structures of which were established by two-dimensional, phase-sensitive NOESY and confirmed by chemical proofs. The benzylation of 1, on the other hand, led to 2-allyloxycarbonylamino-1,6-anhydro-3,4-di- (5) or 2-allyloxycarbonylamino-1,6-anhydro-2-N-benzyl-3,4-di-O-benzyl-2-d eoxy-beta-D- glucopyranose (10). The regioselective cleavage of 5 with titanium tetrachloride gave the expected 3-O-benzyl derivative, the structure of which was ascertained by chemical proofs; the same reaction performed on 10 led to the opening of the anhydro ring to afford 3-benzyl-[3,4-di-O-benzyl-1,2-dideoxy-alpha-D-glucopyrano]-[2,1-d] -2- oxazolidone.  相似文献   

15.
Permethylated alginic acids comprised of 4-linked D-mannopyranosyluronic acid and 4-linked L-gulopyranosyluronic acid residues undergo reductive cleavage to yield, after acetylation, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-D-mannonate (2b) and methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-D-gluconate (3b) as major products. Small amounts (ca. 13%) of ring-contracted products, namely methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-D-mannonate (9) and methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-D-gluconate (10), were also observed in these experiments. These results are in marked contrast to previous results on the reductive cleavage of 4-linked D-glucopyranosyluronic acid residues, wherein the ring-contracted product was formed exclusively. Formation of the ring-contracted products could be completely eliminated by reduction (LiAlH4) of ester groups in the permethylated alginic acid prior to reductive cleavage. In the latter experiments, 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-mannitol (5b) and 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-L-gulitol (6b) were the sole products of reductive cleavage of the 4-linked ManA and 4-linked GulA residues, respectively. However, in the previous experiments it was noted that low yields of permethylated alginic acids were obtained and that extensive depolymerization occurred under methylation conditions. Depolymerization could be avoided and higher yields of permethylated polysaccharides could be obtained, by reduction of the carboxyl groups of the alginic acids prior to methylation. Reductive cleavage of the latter polysaccharides yielded the products expected from 4-linked D-mannopyranosyl and 4-linked L-gulopyranosyl residues, namely 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-mannitol (13b) and 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-L-gulitol (14b), respectively. Using the latter analytical strategy, it was established that the Macrocystis pyrifera alginate was comprised of 60% 4-linked ManA and 40% 4-linked GulA residues, whereas the Pseudomonas aeruginosa alginate was comprised of 80% 4-linked ManA and 20% 4-linked GulA residues.  相似文献   

16.
6-O-acetyl-2,3,4-trideoxy-alpha-DL-glycero-hex-2-enopyranose (1) and 3-O-(6-O-acetyl-2,3,4-trideoxy-alpha-L-glycero-hex-2-enopyranosyl) -1,2;5,6-di-O-isopropylidene-alpha-D-glucofuranose (2) have been investigated by X-ray diffraction methods. Compound 1 crystallises in the monoclinic system, space group P21/a, with cell constants a = 21.123(5), b = 4.439(2), c = 10.085(2) A, and beta = 110.22(2) degrees. Compound 2 crystallises in the orthorhombic system, space group P212121, with cell constants a = 22.110(6), b = 11.651(4), and c = 8.658(3) A. The intensity data were collected in a four-circle automatic diffractometer, with 1488 reflections for 1, and 2151 for 2. The structures were solved by direct methods. The atomic parameters were refined in an anisotropic mode by the full-matrix, least-squares procedure against 1065 and 1884 observed reflections for 1 and 2, respectively, giving R = 0.046 for each compound. The 2-enopyranose rings in 1 and 2 adopt half-chair conformations (H), and that in 2 is markedly deformed. The 1,2-dioxolane ring in 2 has an envelope (E) conformation, whereas the 5,6-dioxolane ring is dynamically disordered and can be represented by a conformational hybrid (E + P). The alpha-D-glucofuranose ring in 2 has a twist conformation (T). The glycoside bond in 2 is characterized by phi and psi torsion angles of 47(2) degrees and 32(2) degrees, respectively.  相似文献   

17.
We report the synthesis, free-radical cyclization of precursors 1,2,7-trideoxy-7-iodo-3,4:5,6-di-O-isopropylidene-D-gluco-hept-1-enitol (1), methyl 7-O-acetyl-6-O-benzyl-8-bromo-2,3,8-trideoxy-4,5-O-isopropylidene-D-gluco-oct-2-enonate (2) and 5-O-acetyl-4-O-benzyl-6-bromo-6-deoxy-2,3-O-isopropylidene-D-glucose-O-benzyloxime (3), readily prepared from D-glucose, and some selected transformations of the carbocycles obtained from these intermediates. In compound 1 we have installed a terminal double bond and an iodide as radical acceptor and leaving group, respectively. Compounds 2 and 3 are epsilon-bromo aldehydes substituted with alpha,beta-unsaturated ester and oxime ether functions as radical traps, respectively. The tributyltin hydride mediated ring closure of these radical precursors have afforded a series of interesting, diverse and highly functionalized carbocycles which can be considered useful building blocks for the synthesis of branched-chain cyclitols, aminocyclitols and aminoconduritols. In these processes, a good chemical yield and high stereoselectivity has been found in the newly formed stereocenters. Particularly interesting has been the finding that the stereochemical outcome of the free-radical cyclization is independent of the ratio of isomers (E or Z) in oxime ether 3. These results show the power and the state of art of this strategy for the stereocontrolled synthesis of enantiomerically pure inositols from carbohydrates.  相似文献   

18.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

19.
The fate of 4-linked D-glucopyranosyluronic residues under reductive-cleavage conditions was investigated by using the Klebsiella aerogenes type 54 strain A3 capsular polysaccharide. Treatment of the fully methylated polysaccharide with triethylsilane and trimethylsilyl trifluoromethanesulfonate in dichloromethane, followed by in situ acetylation, yielded 1,5-anhydro-2,3,4,6-tetra-O-methyl-D-glucitol, 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-glucitol, and 3-O-acetyl-1,5-anhydro-2,4-di-O-methyl-L-fucitol, as expected, but the expected product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue, namely, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-L-gulonate, was not observed. Instead, methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-L-gulonate (6) was identified as the sole product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue. That compound 6 arose as a result of rearrangement during reductive cleavage rather than by reductive cleavage of a 5-linked D-glucofuranosyluronic residue, was established by reductive cleavage of the fully methylated polysaccharide following reduction of its ester groups with either lithium aluminum hydride or lithium aluminum deuteride. The products of the latter reductive cleavage were the same as before, except for the absence of 6 and the presence of 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-glucitol, or its 6,6-dideuterio isomer. Although the reductive-cleavage technique is suitable for the direct analysis of polysaccharides containing 4-linked D-glucopyranosyluronic residues, it does not establish whether the uronic residue is a 4-linked pyranoside or a 5-linked furanoside. The expected product is, however, derived from the 4-linked D-glucopyranosyluronic residue after sequential methylation, reduction of its ester group and reductive cleavage.  相似文献   

20.
Abstract

In an attempt to introduce a substituent at C-2′ in the “up” arabino configuration directly by nucleophilic displacement reaction of a preformed pyrimidine ribonucleoside, we synthesized 2,5′-anhydro-5′-deoxy-2-thiouridine (6) in three steps from uridine. Compound 6 was converted into the 3′-O-acetyl derivative 7. Upon treatment of 7 with triflyl chloride in methylene chloride in the presence of triethylamine and p-dimethylaminopyridine, 2,2′-anhydro-1-(3-O-acetyl-5-chloro-2,5-dideoxy-β-D-arabinofuranosyl)-2-thiouracil (9) was obtained as the only isolable product. Obviously, the intermediate 3′-O-acetyl-2,5′-anhydro-2′-O-triflyl-2-thiouridine (8) was attacked by the chloride nucleophile at C-5′ first giving the 2′-O-triflyl-2-thiouridine intermediate from which 9 was formed by intramolecular nucleopilic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号