首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bovine heart peak II calcium-dependent protease was capable of hydrolyzing its specific inhibitor protein at high molar ratios of protease to inhibitor. The proteolysis was inhibited by leupeptin and required millimolar calcium. Thus, it appeared to be attributable to the calcium-dependent protease and not to possible contaminating proteases in the purified preparations of inhibitor or calcium-dependent protease. Incubation of the purified inhibitor with the calcium-dependent protease produced a discrete pattern of inhibitor fragments on Western blots developed with an inhibitor-specific monoclonal antibody. Traces of similar or identical lower molecular weight immunoreactive material could be observed in Western blots of bovine heart extracts, and the immunoreactivity present as these lower molecular weight forms could be increased by incubation of the extracts with calcium ion. These results suggest that the inhibitor can be proteolyzed to low molecular weight forms which can be detected in cardiac tissue extracts, and that calcium-dependent protease(s) may be responsible for this phenomenon.  相似文献   

2.
Chloride channels in the sarcoplasmic reticulum (SR) are thought to play an essential role in excitation-contraction (E-C) coupling by balancing charge movement during calcium release and uptake. In this study the nucleotide-sensitivity of Cl channels in the SR from rabbit skeletal muscle was investigated using the lipid bilayer technique. Two distinct ATP-sensitive Cl channels that differ in their conductance and kinetic properties and in the mechanism of ATP-induced channel inhibition were observed. The first, a nonfrequent 150 pS channel was inhibited by trans (luminal) ATP, and the second, a common 75 pS small chloride (SCl) channel was inhibited by cis (cytoplasmic) ATP. In the case of the SCl channel the ATP-induced reversible decline in the values of current (maximal current amplitude, I max and integral current, I′) and kinetic parameters (frequency of opening F O , probability of the channel being open P O , mean open T O and closed T c times) show a nonspecific block of the voltage- and Ca2+-dependent SCl channel. ATP was a more potent blocker from the cytoplasmic side than from the luminal side of the channel. The SCl channel block was not due to Ca2+ chelation by ATP, nor to phosphorylation of the channel protein. The inhibitory action of ATP was mimicked by the nonhydrolyzable analogue adenylylimidodiphosphate (AMP-PNP) in the absence of Mg2+. The inhibitory potency of the adenine nucleotides was charge dependent in the following order ATP4− > ADP3− > > > AMP2−. The data suggest that ATP-induced effects are mediated via an open channel block mechanism. Modulation of the SCl channel by [ATP] cis and [Ca2+] cis indicates that (i) this channel senses the bioenergetic state of the muscle fiber and (ii) it is linked to the ATP-dependent cycling of the Ca2+ between the SR and the sarcoplasm. Received: 4 September 1996/Revised: 6 December 1996  相似文献   

3.
The molecular dynamics of highly purified preparations of canine myocardial sarcolemma (SL) and sarcoplasmic reticulum (SR) were quantified by electron spin resonance spectroscopy (ESR). Canine myocardial SL and SR have substantially different motional regimes in their membrane interiors as demonstrated by alterations in the relative peak height ratios, peak widths and peak splittings in ESR spectra of 16-doxylstearate incorporated into SL and SR. Quantification of the apparent order parameters (S) of 16-doxylstearate in SL and SR by analyses of ESR spectra demonstrated that the interior of the SL membrane was substantially more immobilized than the interior of the SR membrane (e.g. S = 0.168 +/- 0.002 for SL and S = 0.128 +/- 0.003 for SR). In contrast, only modest differences in membrane dynamics near the hydrophobic-hydrophilic interface were present in SL and SR as ascertained by ESR spectra of the probe 5-doxylstearate incorporated into these membranes. Myocardial sarcolemma contained heretofore unsuspected amounts of cholesterol (1.4 +/- 0.1 mumol cholesterol/mg protein) while sarcoplasmic reticulum contained only small amounts of cholesterol (0.17 +/- 0.06 mumol cholesterol/mg protein). Model systems employing binary mixtures of plasmenylcholine/cholesterol and phosphatidylcholine/cholesterol demonstrated that the observed alterations in molecular dynamics were due, in large part, to the differential cholesterol content in these two subcellular membrane compartments. Taken together, these results demonstrate that these two functionally distinct myocardial subcellular membranes have markedly disparate molecular dynamics and transmembrane fluidity gradients which may facilitate their performance of specific functional roles during excitation-contraction coupling in myocardium.  相似文献   

4.
Sarcolemmal and sarcoplasmic reticulum membrane vesicle fractions were isolated from cardiac microsomes. Separation of sarcolemmal and sarcoplasmic reticulum membrane markers was documented by a combination of correlative assay and centrifugation techniques. To facilitate the separation, the crude microsomes were incubated in the presence of ATP, Ca2+, and oxalate to increase the density of the sarcoplasmic reticulum vesicles. After sucrose gradient centrifugation, the densest subfraction (sarcoplasmic reticulum) contained the highest (K+,Ca2+)-ATPase activity and virtually no (Na2+,K+)-ATPase activity, even when latent (Na+,K+)-ATPase activity was unmasked. In addition, the sarcoplasmic reticulum fraction contained no significant sialic acid, beta receptor binding activity, or adenylate cyclase activity. Sarcolemmal membrane fractions were of low buoyant density. Preparations most enriched in sarcolemmal vesicles contained the highest level of all the other parameters and only about 10% of the (K+,Ca2+)-ATPase activity of the sarcoplasmic reticulum fraction. The results suggest that (Na+,K+)-ATPase, sialic acid, beta-adrenergic receptors, and adenylate cyclase can be entirely accounted for by the sarcolemmal content of cardiac microsomes. Gel electrophoresis of the sarcolemmal and sarcoplasmic reticulum membrane fractions showed distinct bands. Membrane proteins exclusive to each of the fractions were also demonstrated by phosphorylation. Cyclic AMP stimulated phosphorylation by [gamma-32P]ATP of two proteins of apparent Mr = 20,000 and 7,000 that were concentrated in sarcoplasmic reticulum, but the stimulation was markedly dependent on the presence of added soluble cyclic AMP-dependent protein kinase. Cyclic AMP also stimulated phosphorylation of membrane proteins in sarcolemma, but this phosphorylation was mediated by an endogenous protein kinase activity. The apparent molecular weights of these phosphorylated proteins were 165,000, 90,000, 56,000, 24,000, and 11,000. The results suggest that sarcolemma may contain an integral enzyme complex, not present in sarcoplasmic reticulum, that contains beta-adrenergic receptors, adenylate cyclase, cyclic AMP-dependent protein kinase, and several substrates of the protein kinase.  相似文献   

5.
In previous work on rat striated muscle cells a silver-reducing component was found selectively localized at the terminal cistern/transverse tubule system (Tandler and Pellegrino de Iraldi 1989). To further investigate that problem we performed the Hg-Ag argentaffin reaction on a sarcoplasmic reticulum fraction from rat skeletal muscle. Circular profiles corresponding to vesicular structures were found outlined by silver grains. The number of silver "stained" vesicles were less than the total number vesicles stained by conventional procedures. The correlation between argentaffinities in the intact muscle fiber and their subcellular organelles indicated that the Hg-Ag reactive vesicles must be those derived from the terminal cisternae of the sarcoplasmic reticulum. The silver-reducing constituent aggregates in the presence of 1 mM CaCl2 or 0.5 M K cacodylate. The state of aggregation induced by Ca2+ was not affected by incubation with 0.5% Triton X-100 or by 2 mM EDTA, thus suggesting a localization at or near the membrane of the terminal cistern vesicle facing the junctional gap. In Laemmli SDS-acrylamide gels the Hg-Ag reaction stained all proteins in a manner similar to Coomasie blue. It is suggested that the selective histochemical staining is the result of differential reactivities due to steric requirements of the chemical reaction.  相似文献   

6.
7.
8.
The Ca2+ dependent incorporation of [14C]ethanolamine, L-[14C]serine and [14C]choline into phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine, respectively, were investigated in membrane preparations from rat heart. The ethanolamine and serine base-exchange enzyme-catalyzed reactions were associated with the sarcolemma and sarcoplasmic reticulum. There was a 17.2-fold and 6.8-fold enrichment, respectively, of the serine and the ethanolamine base-exchange enzyme activities in the sarcolemma compared to the starting whole homogenate. The sarcoplasmic reticulum was enriched in the ethanolamine and serine base-exchange enzyme activities. The choline base-exchange enzyme activity of all membranes fractions was negligible compared to the ethanolamine or serine base-exchange enzyme activities. The apparent Km for the ethanolamine and serine base-exchange enzyme in sarcolemma was 14 microM and 25 microM, respectively. The pH optimum for these base-exchange activities was 7.5-8.0. There was a dependence upon Ca2+ for these reactions with a 1 or 4 mM concentration required for maximal activity. The properties of the sarcoplasmic reticulum base-exchange enzymes were similar to the sarcolemmal base-exchange enzymes.  相似文献   

9.
The calmodulin- and cAMP-dependent protein kinase-mediated phosphorylations of isolated sarcolemma and sarcoplasmic reticulum vesicles have been compared. Similarities in the calmodulin-mediated phosphorylation of the sarcolemma and sarcoplasmic reticulum 23,000-Da phosphoproteins included their Mg2+, Na+, Ca2+, and calmodulin sensitivities, as well as the size of their dissociated subunits. In contrast, a number of differences between these phosphoproteins were indicated in their sensitivity to detergents (Triton X-100 and sodium dodecyl sulfate) and calmodulin antagonists (R24571 and trifluoperazine). Furthermore, in contrast to the sarcoplasmic reticulum phosphoprotein, the sarcolemma phosphoprotein could not be affinity labeled with 125I-calmodulin. While these results indicate the probable chemical similarity of the sarcolemma and sarcoplasmic reticulum 23,000-Da phosphoproteins, they also indicate there are differences in the lipid/phosphoprotein interactions in these two membranes.  相似文献   

10.
Conditions were developed in the absence of Ca(2+) for purification, delipidation, and long term stabilization of octaethylene glycol monododecyl ether (C(12)E(8))-solubilized sarcoplasmic reticulum Ca(2+)-ATPase with tightly bound Mg(2+) and F(-), an analog for the phosphoenzyme intermediate without bound Ca(2+). The Ca(2+)-ATPase activity to monitor denaturation was assessed after treatment with 20 mm Ca(2+) to release tightly bound Mg(2+)/F(-). The purification and delipidation was successfully achieved with Reactive Red-agarose affinity chromatography. The solubilized Mg(2+)/F(-)-bound Ca(2+)-ATPase was very rapidly denatured at pH 8, but was perfectly stabilized at pH 6 against denaturation for over 20 days at 4 degrees C even without exogenously added phospholipid and at a high C(12)E(8)/enzyme weight ratio (10:1). The activity was not restored unless the enzyme was treated with 20 mm Ca(2+), showing that tightly bound Mg(2+)/F(-) was not released during the long term incubation. The perfect stability was attained with or without 0.1 mm dithiothreitol, but inactivation occurred with a half-life of 10 days in the presence of 1 mm dithiothreitol, possibly due to reduction of a specific disulfide bond(s). The remarkable stability is likely conferred by intimate gathering of cytoplasmic domains of Ca(2+)-ATPase molecule induced by tight binding of Mg(2+)/F(-). The present study thus reveals an essential property of the Mg(2+)/F(-)/Ca(2+)-ATPase complex, which will likely provide clues to understanding structure of the Ca(2+)-released form of phosphoenzyme intermediate at an atomic level.  相似文献   

11.
H Barrabin  H M Scofano  G Inesi 《Biochemistry》1984,23(7):1542-1548
The stoichiometry of phosphorylation (catalytic) sites in sarcoplasmic reticulum vesicles ( SRV ) and SR ATPase purified by differential solubilization with deoxycholate was found to be 4.77 +/- 0.4 and 6.05 +/- 0.18 nmol/mg of protein, respectively, when phosphorylation was carried out under conditions permitting 32P labeling of nearly all sites. Assuming that each site corresponds to a single 115K ATPase chain, the observed site stoichiometry accounts only for 55% and 70% of the total protein. Failure to obtain higher phosphorylation levels was due to the presence of nonspecific protein contaminants in SRV or to the presence of inactive aggregates in the ATPase purified with deoxycholate. This was demonstrated by dissolving SRV and purified ATPase with lithium dodecyl sulfate, subjecting them to molecular sieve HPLC, and collecting the elution fractions for determination of protein, measurement of 32P-labeled sites, and electrophoretic analysis. In fact, in the specific elution peak containing the 115K ATPase chains, phosphorylation levels were 6.62 +/- 0.33 and 7.03 +/- 0.18 in SRV and purified ATPase, corresponding to 68% and 86% of the protein in the specific elution peak. An alternate purification method was then developed, based on solubilization of SRV with dodecyl octaethylene glycol monoether ( C12E8 ), separation of delipidated ATPase by anion-exchange chromatography, and enzyme reactivation with phosphatidylcholine. This preparation yields 7.3 +/- 0.44 nmol of phosphorylation site/mg of protein of the SRV fraction before HPLC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The stepwise N-methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) (phospholipid methylation) was assessed in cardiac sarcolemma and sarcoplasmic reticulum of aging rats. This phenomenon was depressed in aging hearts relative to young ones. A decrease in activity of catalytic sites appears to be involved in the depressed phospholipid methylation of aging myocardium.  相似文献   

13.
Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles   总被引:2,自引:0,他引:2  
The rate of calcium uptake by sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle was stimulated by inside-negative membrane potential generated by K+ gradients in the presence of valinomycin. The increase in the calcium transport rate was accompanied by a proportional increase in the rate of calcium-dependent ATP hydrolysis, without significant change in the steady state level of the phosphorylated enzyme intermediate. Changes in the sarcoplasmic reticulum membrane potential during calcium transport were monitored with the optical probe, 3,3'-diethylthiadicarbocyanine. The decrease in the absorbance of 3,3'-diethylthiadicarbocyanine at 660 nm following generation of inside-negative membrane potential was reversed during ATP-induced calcium uptake. These observations support an electrogenic mechanism for the transport of calcium by the sarcoplasmic reticulum.  相似文献   

14.
Phosphorus nuclear magnetic resonance spectra of rabbit muscle light sarcoplasmic reticulum membranes consist of two overlapping resonances, one much broader than the other. The broad resonance arises from phospholipids motionally restricted, probably by association with the Ca2+-ATPase, while the narrow resonance arises from phospholipid only slightly perturbed by the presence of the protein. (Selinsky, B.S. and Yeagle, P.L. (1984) Biochemistry 23, 2281-2288). The rate of exchange between the two phospholipid domains represented by the resonances was determined by measuring the transfer of magnetization from the broad resonance to the narrow resonance. The rate of exchange of phospholipids from the restricted domain to the nonrestricted domain was determined to be 1 s-1.  相似文献   

15.
Sarcoplasmic reticulum vesicles can catalyze the synthesis of ATP coupled to the efflux of calcium. The rate of this reaction is much faster when the vesicles are loaded in a medium containing phosphate than when oxalate is the precipitating agent. Two components of ATP synthesis can be observed when vesicles loaded with calcium phosphate are used. In the millisecond range and when the loaded vesicles are phosphorylated by Pi, the addition of ADP leads to an initial burst of ATP synthesis and after 50 ms approximately 3.0 nmol of ATP/mg protein are synthesized. This burst is not inhibited by ATP and is enhanced by physiological concentrations of KCl. The slow component of ATP synthesis is inhibited by both ATP and 100 mM KCl. In the physiological pH range, betaine, a trimethylamine present in different tissues, increases the level of phosphoenzyme formed by Pi and enhances the amount of ATP synthesized during the first turn of the reversal of the calcium pump.  相似文献   

16.
A purified preparation of sarcoplasmic reticulum from rabbit skeletal muscle has been found to consist of a heterogeneous population of vesicles. Isopycnic centrifugation was used to obtain "light" and "heavy" vesicles from the upper and lower ends of a 25 to 45% (w/w) linear sucrose gradient. Each fraction accounted for about 10 to 15% of the total vesicles. The remainder of the vesicles were of intermediate density and banded between the light and heavy fraction. Light vesicles were composed of about equal amounts of phospholipid and Ca-2+ pump protein which contained approx. 90% of the protein. Heavy vesicles contained in addition to the Ca-2+ pump protein (55-65% of the protein) two other major protein components, the Ca-2+ binding and M55 proteins which accounted for 20-25 and 5-7% of the protein of these vesicles, respectively. The sarcoplasmic reticulum subfractions had 32-P-labelled phosphoenzyme levels proportional to their Ca-2+ pump protein content and contained similar Ca-2+-stimulated ATPase activities. They were capable of accumulating Ca-2+ in the presence of ATP and of releasing the accumulated Ca-2+ when placed into a medium with a low Ca-2+ concentration. The vesicles differed significantly in that heavy vesicles had a greater number of non-specific Ca-2+ binding sites than light vesicles (approx. 220 vs 75 nmol of bound Ca-2+ per mg protein), in accordance with their high content of Ca-2+ binding protein. Electron dense material could be seen within the compartment of heavy but not light vesicles. Removal of Ca-2+ binding and M55 proteins from heavy vesicles resulted in empty membranous structures consisting mainly of Ca-2+ pump protein and phospholipid. Electron micrographs of sections of muscle showed dense material in terminal cisternae but not in longitudinal sections of sarcoplasmic reticulum. These experiments are consistent with the interpretation that (1) the electron dense material inside heavy vesicles may be referable to Ca-2+ binding and/or M55 proteins, and that (2) light and heavy vesicles may be derived from the longitudinal sections and terminal cisternae of sarcoplasmic reticulum, respectively.  相似文献   

17.
18.
1. The phosphorylation by cAMP and protein kinase I of rat cardiac sarcolemma (SL) and sarcoplasmic reticulum (SR) isolated from the same homogenate, was compared. 2. In both fractions, the phosphate incorporation is strongly dependent on the ATP and the membrane protein concentration. 3. SDS-gel electrophoresis reveals that in the SL preparation a protein of Mr = 24,500 and a glycoprotein of Mr = 17,500 are mainly phosphorylated, while in the SR fraction the main phosphate incorporation is found in a protein having a Mr = 37,000. 4. Isoprenaline stimulates the phosphorylation of SL but not of SR. Propranolol abolished that stimulatory action of isoprenaline completely, suggesting that the beta-adrenoceptor is involved.  相似文献   

19.
20.
Using the isotope exchange technique including 45Ca, the Ca2+-binding and Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of rat heart was studied. The ATP-independent binding of Ca2+ to isolated membrane fractions is by 1--2 orders of magnitude less than the ATP-dependent Ca2+-accumulating capacity of the fractions. The Ca2+-accumulating capacity of mitochondria is increased 6--8 fold after addition of physiological concentrations of succinate and Pi to the incubation medium. Under these conditions the ratio of Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of the heart is 100:3,12:2,9. The initial rate of Ca2+-uptake by the sarcoplasmic reticulum is much higher in comparison with sarcolemma and mitochondria. A high Ca2+-accumulating capacity of heart mitochondria probably determines a long-term regulation of the concentration of "troponin-accessible" Ca2+ in the sarcoplasm, whereas the high initial rate of Ca2+ accumulation by the sarcoplasmic reticulum provides for a rapid decrease of Ca2+ concentration during rhythmic contractions of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号