首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过扫描电镜观察了宽叶泽苔草Caldesia grandisSamuel.的花器官发生。宽叶泽苔草 的萼片3枚,逆时针螺旋向心发生 ;花瓣3枚,呈一轮近同时发生,未观察到花瓣_雄蕊复合原基;雄蕊、心皮原基皆轮状向心 发生,最先近同时发生的6枚原基全部发育成雄蕊,随后发生的6枚原基早期并无差别,在发 育过程中逐渐出现形态差异,直至其中1-4枚发育成心皮,其余的发育成雄蕊;而后的几轮 心皮原基,6枚一轮,陆续向心相间发生。本文揭示了3枚萼片螺旋状的发生方式,并推测这种螺旋方式是泽泻科植物进化过程中保留下来  相似文献   

2.
Floral onset in soybean (Glycine max cv. Ransom) is characterized by precocious initiation of axillary meristems in the axils of the most recently initiated leaf primordium. During floral transition, leaf morphology changes from trifoliolate leaf with stipules, to a three-lobed bract, to an unlobed bract. Soybean flowers initiated at 26/22 C day/night temperatures are normal, papilionaceous, and pentamerous. Sepal, petal, and stamen whorls are initiated unidirectionally from the abaxial to adaxial side of the floral apex. The median sepal is located abaxially and the median petal adaxially on the meristem. The organogeny of ‘Ransom’ flowers was found to be: sepals, petals, outer stamens plus carpel, inner stamens; or, sepals, petals, carpel, outer stamens, inner stamens. The outer stamen whorl and the carpel show possible overlap in time of initiation. Equalization of organ size occurs only within the stamen whorls. The sepals retain distinction in size, and the petals exhibit an inverse size to age relationship. The keel petals postgenitally fuse along part of their abaxial margins; their bases, however, remain free. Soybean flowers initiated at cool day/night temperatures of 18/14 C exhibited abnormalities and intermediate organs in all whorls. The gynoecium consisted of one to ten carpels (usually three or four), and carpel connation varied. Fusion of keel petals was often lacking, and stamen filaments fused erratically. Multiple carpellate flowers developed into multiple pods that were separate or variously connate. Intermediate type organs had characteristics only of organs in adjacent whorls. These aberrant flowers demonstrate that the floral meristem of soybean is not fixed or limited in its developmental capabilities and that it has the potential to produce alternate morphological patterns.  相似文献   

3.
利用扫描电镜(SEM)和光镜(LM)对臭椿花序及花器官的分化和发育进行了初步研究,表明:1)臭椿花器官分化于当年的4月初,为圆锥花序;2)分化顺序为花萼原基、花冠原基、雄蕊原基和雌蕊原基。5个萼片原基的发生不同步,并且呈螺旋状发生;5个花瓣原基几乎同步发生且其生长要比雄蕊原基缓慢;雄蕊10枚,两轮排列,每轮5个原基的分化基本是同步的;雌蕊5,其分化速度较快;3)在两性花植株中,5个心皮顶端粘合形成柱头和花柱,而在雄株中,5个心皮退化,只有雄蕊原基分化出花药和花丝。本研究着重观察了臭椿中雄花及两性花发育的过程中两性花向单性花的转变。结果表明,臭椿两性花及单性花的形成在花器官的各原基上是一致的(尽管时间上有差异),雌雄蕊原基同时出现在每一个花器官分化过程中,但是,可育性结构部分的形成取决于其原基是否分化成所应有的结构:雄蕊原基分化形成花药与花丝,雌蕊原基分化形成花柱、柱头和子房。臭椿单性花的形成是由于两性花中雌蕊原基的退化所造成,其机理有待于进一步研究。  相似文献   

4.
泽苔草的花器官发生   总被引:9,自引:2,他引:7  
本文用扫描电镜观察了泽苔草的花器官发生过程,观察结果表明:花萼以螺旋状方式向心发生,花瓣以接近轮状方式近同时发生,不存在花瓣雄蕊复合原基。雄蕊和心皮均以轮状向心方式发生,6枚雄蕊分两轮分别在对萼和对瓣的位置先后发生,至发育的后期排成一轮,但仍分别处于对萼和对瓣的位置;随后发生的第一轮3个心皮原基与3枚萼片相对,第二、三轮心皮原基分别为1~3个,与前一轮心皮相间排列向心发生。本文首次揭示了泽苔草花被的外轮3个萼片螺旋状发生方式,这种螺旋状方式很可能是泽泻科植物的花部结构在进化过程中适应环境而保留下来的一种较原始的叶性特征。  相似文献   

5.
Inflorescence and floral ontogeny are described in the mimosoid Acacia baileyana F. Muell., using scanning electron microscopy and light microscopy. The panicle includes first-order and second-order inflorescences. The first-order inflorescence meristem produces first-order bracts in acropetal order; these bracts each subtend a second-order inflorescence meristem, commonly called a head. Each second-order inflorescence meristem initiates an acropetally sequential series of second-order bracts. After all bracts are formed, their subtended floral meristems are initiated synchronously. The sepals and petals of the radially symmetrical flowers are arranged in alternating pentamerous whorls. There are 30–40 stamens and a unicarpellate gynoecium. In most flowers, the sepals are initiated helically, with the first-formed sepal varying in position. Petal primordia are initiated simultaneously, alternate to the sepals. Three to five individual stamen primordia are initiated in each of five altemipetalous sectorial clusters. Additional stamen primordia are initiated between adjacent clusters, followed by other stamens initiated basipetally as well as centripetally. The apical configuration shifts from a tunica-corpus cellular arrangement before organogenesis to a mantle-core arrangement at sepal initiation. All floral organs are initiated by periclinal divisions of the subsurface mantle cells. The receptacle expands radially by numerous anticlinal divisions in the mantle at the summit, concurrently with proliferation of stamen primordia. The carpel primordium develops in terminal position by conversion of the floral apex.  相似文献   

6.
The floral ontogeny of Pisum sativum shows a vertical order of succession of sepals, petals plus carpel, antesepalous stamens, and antepetalous stamens. Within each whorl, unidirectional order is followed among the organs, beginning on the abaxial side of the flower, as in most papilionoids. Unusual features include the four common primordia which precede initiation of discrete petal and antesepalous stamen primordia, and the marked overlap of organ initiations between whorls which are usually separately initiated. The stamens arise in free condition, then become diadelphous by intercalary growth at the base of nine stamens, and finally become pseudomonadelphous by surface fusion between the vexillary stamen filament and the adjacent edges of the filament tube. The early initiation of the carpel is not unique among papilionoids, but is somewhat unusual.  相似文献   

7.
The development of the inflorescence and flowers are described for Gymnotheca chinensis Decaisne (Saururaceae), which is native only to southeast China. The inflorescence is a short terminal spike of about 50–70 flowers, each subtended by a small bract. There are no showy involucral bracts. The bracts are initiated before the flowers, in acropetal order. Flowers tend to be initiated in whorls of three which alternate with the previous whorl members. No perianth is present. The flower contains six stamens, and four carpels fused in an inferior ovary containing 40–60 ovules on four parietal placentae. Floral symmetry is dorsiventral from inception and throughout organ initiation. Floral organs are initiated in the following order: 1) median adaxial stamen, 2) a pair of lateral common primordia which bifurcate radially to produce two stamen primordia each, 3) median abaxial stamen, 4) a pair of lateral carpel primordia, 5) median adaxial carpel, 6) median abaxial carpel. This order of initiation differs from that of any other Saururaceae previously investigated. The inferior ovary results from intercalary growth below the level of stamen attachment; the style elongates by intercalary growth, and the four stigmas remain free. The floral structure of Gymnotheca is relatively advanced compared to Saururus, but its assemblage of specializations differs from that of either Anemopsis or Houttuynia, the other derived genera in the Saururaceae.  相似文献   

8.
Trillium apetalon Makino is unique amongTrillium in having apetalous flowers. Using scanning electron microscope, the early floral development was observed in comparison with that ofT. kamtschaticum Pallas ex Pursh having petalous flowers. Morphologically petal primordia closely resemble stamen primordia in their more or less narrow and radially symmetric shape and are clearly distinct from sepal primordia with broad bases. Early in floral development sepal primordia are first initiated and subsequently two whorls of three primordia each are formed in rapid sequence, the first three at the corners and the second three at the sides of the triangular floral apex. Based on comparison in position and early developmental processes of their primordia, petals and outer stamens ofTrillium kamtschaticum are equivalent to outer stamens and inner stamens ofT. apetalon. The replacement of petals by outer stamens apparently leads to the loss of petals inTrillium apetalon flowers. Such a replacement can be interpreted in terms of homeosis. The replacement of the petal whorl leads to the serial replacement of the subsequent whorls: outer stamens by inner stamens, and inner stamens by gynoecium inTrillium apetalon. The term ‘serial homeosis’ is introduced for this serial replacement.  相似文献   

9.
灌木铁线莲(毛茛科)花器官的发生与发育   总被引:1,自引:1,他引:0  
用扫描电子显微镜(SEM)对铁线莲属(Clematis L.)植物灌木铁线莲(C. fruticosa Turcz.)花的形态发生和发育过程进行了观察。灌木铁线莲花原基形成后,4枚萼片以交互对生的方式首先发生,呈轮状排列。最早的4枚雄蕊原基在4枚萼片交接的位置上近螺旋状发生,此后,随着雄蕊原基的向心发生和数目不断增多,其发生的螺旋状序列逐渐明显。雄蕊原基发生后,在花原基顶端,心皮原基沿着雄蕊原基的发生序列呈螺旋状发生。本文结果支持在原始被子植物花中螺旋状排列和轮状排列同时存在的观点。此外,本文也进一步证实了花萼与苞片的同源性。  相似文献   

10.
大戟科麻疯树属三种植物花器官发生   总被引:1,自引:0,他引:1  
利用扫描电子显微镜观察了大戟科Euphorbiaceae麻疯树属Jatropha麻疯树J. curcas L.、佛肚树J. podagrica Hook.和棉叶麻疯树J. gossypifolia L.花器官发生。结果表明: 麻疯树、佛肚树和棉叶麻疯树花萼原基均为2/5型螺旋发生。在同一个种不同的花蕾中, 花萼的发生有两种顺序: 逆时针方向和顺时针方向。远轴面非正中位的1枚先发生。5枚花瓣原基几乎同时发生。雄花中雄蕊两轮, 外轮对瓣, 内轮对萼。研究的3种麻疯树属植物雄蕊发生方式有两种类型: 麻疯树亚属麻疯树的5枚外轮雄蕊先同时发生, 5枚内轮雄蕊后同时发生, 佛肚树亚属佛肚树和棉叶麻疯树雄蕊8-9枚, 排成两轮, 内外轮雄蕊同时发生。雌花的3枚心皮原基为同时发生。麻疯树属单性花, 雌花的子房膨大而雄蕊退化, 雄花的雄蕊正常发育, 子房缺失。根据雄蕊发生方式, 支持将麻疯树属分为麻疯树亚属subgen. Jatropha和佛肚树亚属subgen. Curcas。  相似文献   

11.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

12.
Utilizing scanning electron microscopy, we studied the early floral ontogeny of three species of Caesalpinia (Leguminosae: Caesalpinioideae): C. cassioides, C. pulcherrima, and C. vesicaria. Interspecific differences among the three are minor at early and middle stages of floral development. Members of the calyx, corolla, first stamen whorl, and second stamen whorl appear in acropetal order, except that the carpel is present before appearance of the last three inner stamens. Sepals are formed in generally unidirectional succession, beginning with one on the abaxial side next to the subtending bracts, followed by the two lateral sepals and adaxial sepal, then lastly the other adaxial sepal. In one flower of C. vesicaria, sepals were helically initiated. In the calyx, the first-initiated sepal maintains a size advantage over the other four sepals and eventually becomes cucullate, enveloping the remaining parts of the flower. The cucullate abaxial sepal is found in the majority of species of the genus Caesalpinia. Petals, outer stamens, and inner stamens are formed unidirectionally in each whorl from the abaxial to the adaxial sides of the flower. Abaxial stamens are present before the last petals are visible as mounds on the adaxial side, so that the floral apex is engaged in initiation of different categories of floral organs at the same time.  相似文献   

13.
青城细辛的花器官发生   总被引:1,自引:0,他引:1  
利用扫描电镜观察了青城细辛(Asarum splendens)的花器官发生过程。青城细辛的花器官为轮状结构,向心发生,依次为两轮3基数的花被原基,两轮6基数的雄蕊原基和一轮6基数的心皮原基。两轮花被原基互生,只有外轮(先发生的一轮)花被原基完全发育,而内轮(后发生的一轮)花被原基在发育过程中逐渐退化。两轮雄蕊原基为离心发生:位于内侧的一轮雄蕊原基先发生,每两个原基正对第一轮发生的花被原基,外侧的一轮雄蕊原基后发生,与内轮雄蕊原基互生。心皮与内侧的一轮雄蕊互生。  相似文献   

14.
利用扫描电镜观察了青城细辛(Asarum splendens)的花器官发生过程。青城细辛的花器官为轮状结构,向心发生,依次为两轮3基数的花被原基,两轮6基数的雄蕊原基和一轮6基数的心皮原基。两轮花被原基互生,只有外轮(先发生的一轮)花被原基完全发育,而内轮(后发生的一轮)花被原基在发育过程中逐渐退化。两轮雄蕊原基为离心发生:位于内侧的一轮雄蕊原基先发生,每两个原基正对第一轮发生的花被原基,外侧的一轮雄蕊原基后发生,与内轮雄蕊原基互生。心皮与内侧的一轮雄蕊互生。  相似文献   

15.
A comparative developmental study of the inflorescence and flower of Hamamelis L. (4-merous) and Loropetalum (R. Br.) Oliv. (4–5 merous) was conducted to determine how development differs in these genera and between these genera and others of the family. Emphasis was placed on determining the types of floral appendages from which the similarly positioned nectaries of Hamamelis and sterile phyllomes of Loropetalum have evolved. In Hamamelis virginiana L. and H. mollis Oliv. initiation of whorls of floral appendages occurred centripetally. Nectary primordia arose adaxial to the petals soon after the initiation of stamen primordia and before initiation of carpel primordia. In Loropetalum chinense (R. Br.) Oliv. floral appendages did not arise centripetally. Petals and stamens first arose on the adaxial portion, and then on the abaxial portion of the floral apex. The sterile floral appendages (sterile phyllomes of uncertain homology) were initiated adaxial to the petals after all other whorls of floral appendages had become well developed. In all three species, two crescent shaped carpel primordia arose opposite each other and became closely appressed at their margins. Postgenital fusion followed and a falsely bilocular, bicarpellate ovary was formed. Ovule position and development are described. The nectaries of Hamamelis and sterile phyllomes of Loropetalum rarely develop as staminodia, suggesting a staminodial origin. However, these whorls arise at markedly different times and are therefore probably not derived from the same whorl of organs in a common progenitor. This hypothesis seems probable when one considers that the seemingly least specialized genus of the tribe, Maingaya, bears whorls of both staminodia and sterile phyllomes inside its whorl of stamens.  相似文献   

16.
赵祥  苏雪  吴海燕  张辉  孙坤 《植物研究》2020,40(6):813-819
利用扫描电镜(SEM)观察了突脉金丝桃(Hypericum przewalskii)(金丝桃科)的花部器官发生发育过程。结果表明,突脉金丝桃2枚苞片原基首先发生,花原基在苞片原基的包裹中完成发育。在苞片原基发生后,5枚萼片原基沿2/5圆周依次发生。萼片原基发生近完成时,5枚雄蕊—花瓣共同原基在萼片原基之间的角隅处近同时发生,此后,雄蕊—花瓣共同原基下部向外伸展形成花瓣原基,上部向上凸起形成与花瓣原基相对的雄蕊原基,之后雄蕊原基由内向外依次分化发育产生次生雄蕊原基,随着次生雄蕊原基的发育和数目的增多,形成了5束雄蕊。次生雄蕊原基发生的同时,5枚心皮原基近同时发生。突脉金丝桃雄蕊束的发生方式表明,金丝桃属的雄蕊束可能起源于5基数的单轮雄蕊。金丝桃科与藤黄科植物花瓣及雄蕊原基发生方式的显著不同,支持了APG Ⅲ系统将金丝桃亚科从藤黄科中独立为金丝桃科的观点。  相似文献   

17.
Bauhinia malabarica and B. divaricata have both been reported to have dimorphic flowers; floral development of these species has been investigated and compared using SEM. B. malabarica is subdioecious, with three types of flowers: perfect, staminate, and carpellate. Individual trees usually have only one type of flower. Perfect and carpellate flowers have similar initiation of floral organs; each has five sepals, five petals, two whorls of five stamen primordia and a carpel primordium. The carpels of carpellate flowers do not differ from those of perfect flowers throughout development. Both have a gynophore or stipe and a cuplike hypanthium. Stamen development diverges markedly after mid-development: the perfect flowers have ten stamens in two whorls, the outer with longer filaments than the inner. All stamens have anthers, which are covered abaxially with abundant inflated trichomes. Carpellate flowers have a circle of short cylindrical staminodia, each bearing a few hairs, about the base of the carpel on the rim of the hypanthium. Heteromorphy in B. malabarica is effected by suppression of stamen development, even though the usual number of stamen primordia is initiated. Suppression of stamens occurs at midstage in development in carpellate flowers of B. malabarica, and is complete. In B. divaricata nine stamen primordia are released from suppression in late stage, undergo intercalary growth and form a staminodial tube around the carpel stipe. The dimorphy in B. divaricata is expressed late in bud enlargement as divergent rates of growth in the carpel in the two morphs.  相似文献   

18.
A study of the floral ontogeny of Popowia was carried out to investigate the phyllotactic arrangement of the floral organs and occurring trends in the androecium of Annonaceae. The flower buds arise on a common stalk in the axil of a bract. Three sepals emerge in quick succession and are rapidly overrun in size by two whorls of petals. The androecium is initiated centripetally in successive whorls. A first whorl of three pairs of outer staminodes emerges opposite the outer petals and is followed by nine staminodes. Next a whorl of nine fertile stamens arises in alternation with the second whorl of staminodes. The carpels arise in three alternating whorls of nine. The nature of the perianth parts is morphologically identical. The process of cyclisation of the androecium from a spiral is discussed for Annonaceae and Magnoliidae in general. The inception of the three outer stamen pairs is a widespread reductive step for multistaminate androecia in the process of oligomerization. It is proposed to define the cyclic inception of numerous stamens as whorled polyandry, being an intermediate step between true polyandry and a reduced stamen number in whorls. The absence of a cup-like shape in the carpel development is related to the flattened receptacle.  相似文献   

19.
Distinctions in floral ontogeny among three segregate genera (Cassia sensu stricto, Chamaecrista, and Senna) of Cassia L. support their separation. In all species studied, the order of floral organ initiation is: sepals, petals, antesepalous stamens plus carpel, and lastly antepetalous stamens. Sepal initiation is helical in all three genera, which however differ in whether the first sepal is initiated in median abaxial position (Senna), or abaxial and off-median (Cassia javanica), a rare character state among legumes. Order of petal initiation varies: helical in Senna vs. unidirectional in Cassia and Chamaecrista. Both stamen whorls are uniformly unidirectional. Intergeneric ontogenetic differences occur in phyllotaxy, inflorescence architecture, bracteole formation, overlap of initiation among organ whorls (calyx/corolla in Cassia; two stamen whorls in Chamaecrista), eccentric initiation on one side of a flower, anther attachment, anther pore structure, and precocious carpel initiation in Senna. The asymmetric corolla and androecium in Chamaecrista arise by precocious organ initiation on one side (left or right). The poricidal anther character can result from differing developmental pathways: lateral slits vs. sealing of lateral sutures; clasping hairs vs. sutural ridges; terminal pores (one or two) vs. none; and clamp layer formation internally that prevents lateral dehiscence. Genera differ in corolla aestivation patterns and in stigma type. Convergence is shown among the three genera, based on intergeneric dissimilarities in early floral ontogeny (floral position in the inflorescence, bracteole presence, position of the first sepal initiated, order of petal initiation, asymmetric initiation, overlap between whorls, anther morphology, and time of carpel initiation) resulting in similarities at anthesis (showy, mostly yellow salverform flowers, heteromorphic stamens, poricidal anther dehiscence, bee pollination, and chambered stigma).  相似文献   

20.
We examined the floral development of Dichocarpum fargesii, Thalictrum fargesii, Thalictrum przewalskii, and Aquilegia yabeana in Thalictroideae, Ranunculaceae, by scanning electron microscope. The sepals are initiated spirally in D. fargesii and A. yabeana, and in two pairs (with four sepals) or spirally (with five sepals) in T. fargesii and T. przewalskii. The petals in D. fargesii and A. yabeana and the stamens and carpels are initiated in a whorled pattern in all three genera. The floral phyllotaxis is whorled in these genera. The primordia of sepals are lunular and truncate, but that of petals and/or stamens are hemispherical, rounded, and much smaller than the sepal primordia. A relatively long plastochron exists between the last sepal and the first petal in D. fargesii and A. yabeana or the first stamen in T. fargesii and T. przewalskii. The similarity between the primordia of petals and stamens may indicate an evolutionary relationship between petals and stamens. The petals develop slower than the stamens in D. fargesii, but faster than stamens in A. yabeana. The early developmental stages of the staminodes in A. yabeana are similar to that of stamens, so they may be phylogenetically homologous organs. The carpel primordia are initiated in a single whorl; are lunular in shape and plicate in A. yabeana and D. fargesii; and are initiated spirally and hemispheric in shape and ascidiate in T. fargesii and T. przewlaskii. The stigma is everted and decurrent with unicellular papillae in T. fargesii and T. przewalskii; the head has unicellular papillae in D. fargesii and is smooth in A. yabeana. The floral development features of Aquilegia are unique in Thalictroideae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号