首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two species of the genus Amphidiniopsis, a marine armoured, sand‐dwelling dinoflagellate, Amphidiniopsis hexagona Yoshimatsu, Toriumi et Dodge sp. nov. and Amphidiniopsis swedmarkii (Balech) Dodge were collected from Japanese sandy beaches, and their morphologic features were observed by light microscopy and scanning electron microscopy. Amphidiniopsis hexagona was hexagonal in ventral view and measured 44–59 urn in length and 40–53 urn in width. The plate formula is Po, 4′, 2a, 7″, 3c, 4s (+ 2 accessory), 5″″, 2″″. This plate arrangement of A. hexagona is essentially the same as those of Amphidiniopsis hirusta and A. swedmarkii, but this new species can be readily distinguished from the latter two species by the following characters: (i) the cell shape; (ii) the presence of an antapical spine; and (iii) the surface ornamentation of thecal plates.  相似文献   

2.
Thecadinium inclinatum Balech and four new marine sand‐dwelling species of the dinoflagellate genus Thecadinium are described from the sandy beaches along the coast of Shikoku, Japan. Thecadinium inclinatum is thecate, bilaterally flattened, elliptical in shape, non‐photosynthetic, and measures 55–75 μ in length and 43–59 μ in depth. The epi‐ and hypotheca theca are semielliptical and the thecal surface is smooth with small pores. The plate formula is Po (pore plate), 3′, 7″,?c,?s, 5″′1″′.Thecadinium ovatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and almost oval in lateral view. The cell measures 40–50 μm in length and 33–40 μm in depth. The hypotheca has two or three strong antapical spines. The plate formula is 3′, 6″,6c, 5s?, 5″′, 1″′. Thecadinium striatum sp. nov. is thecate, non‐photosynthetic, bilaterally flattened and somewhat elliptical in lateral view. The cell is 33–41 μm long and 23–30 μm deep. Several striae are present on the hypotheca. The plate formula is 3′, 6″, 6c, 5s?, 5″′, 1″″. Thecadinium yashimaense sp. nov. is bilaterally flattened, photosynthetic and elliptical in ventral view. The cell is 44–65 μm long and 23–36 μm wide. The thecal surface is smooth with small pores. he cingulum forms a steep left–handed spiral. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″′. Thecadinium arenarium sp. nov. is somewhat wedge‐shaped in ventral view, photosynthetic with brownish chloroplasts and almost rounded in cross section. The cingulum forms a steep left‐handed spiral. The cell measures 35–41 μm in length and 25–30 μm in width. The thecal surface is weakly reticulated with small pores. The hypotheca is conical. The plate formula is Po, 3′, la, 6″, 5c, 4s, 5″′, 1″″.  相似文献   

3.
A new sand-dwelling dinoflagellate is described from Sesoko Beach, Okinawa Island, subtropical Japan and its micromorphology is studied by means of light and electron microscopy. The cell consists of a small epitheca and a large hypothecs superficially resembling members of the unarmored genus Amphidinium. The cell is dorso-ventrally flattened and possesses a single chloroplast with a large conspicuous pyrenoid. Transmission electron microscopy revealed that the dinoflagellate possesses typical dinoflagellate cellular organization. Scanning electron microscopy demonstrated that the organism is thecate and the thecal plate arrangement is Po, 4′, 1a, 7″, 5c, 4s, 6″′, 2″″. Most of the characteristics suggest gonyaulacalean affinity of the new species. These are the presence of ventral pore, lack of canal plate, direct contact between the sulcal anterior plate and the flagellar pore, possession of six postcingular plates and asymmetrical arrangement of the antapical plates. Affinity to existing families of the order Gonyaulacales has not been determined. Based on the unique cell shape, thecal plate arrangement and the presence of ventral pore, a new genus, Amphidiniella, is established for this organism and the species is named A. sedentaria Horiguchi gen. et sp. nov.  相似文献   

4.
A new, sand-dwelling, armored dinoflagellate, Roscoffia minor sp. nov., is described from Ishikari beach, Hokkaido, Japan. The dinoflagellate has been collected from sand samples taken both near the water's edge and further upshore (25 m from the water's edge at a depth of 1 m), indicating that it is a true sand-dwelling species. Roscoffia minor is heterotrophic and lacks both a chloroplast and an eye-spot. The cell consists of a flattened cap-shaped epitheca and a large hemispheroidal hypotheca, and it is quite different from cells of the typical armored dinoflagellates. The thecal plate formula is: Po, 3′, la, 5″, 3c, 3s, 5″, 1″″. Its distinct cell shape and the thecal plate arrangement indicate affinity to the monotypic genus Roscoffia. Roscoffia minor is distinguished from Roscoffia capitata, the type species, by its smaller size and the possession of a finger-like apical projection. The thecal arrangement of the epitheca is similar to those of the members of the family Podolampaceae, while the hypothecal arrangement is the same as that of members of the subfamily Diplopsalioideae (family Congruentidiaceae). The organism seems to be positioned somewhere intermediate between these two families, but the family to which this dinoflagellate should be affiliated could not be determined.  相似文献   

5.
A new marine heterotrophic dinoflagellate species, Protoperidinium belizeanum sp. nov., from a coral reef‐mangrove pond was identified from scanning electron micrographs. Recognition of this new species was based on unique features of the thecal morphology, which included cell size and shape, presence of short and wide postcingular plates, sulcal architecture, antapical spines, and intricate thecal plate patterns of ridged hexagonal depressions. The thecal plate formula is as follows: Po, X, 4′, 3a, 7″, 4C (3+t), 6S, 5?, 2″″. Species association of P. be‐lizeanum sp. nov. within the genus Protoperidinium, its habitat, and associated dinoflagellates species are discussed.  相似文献   

6.
Amphidiniopsis is a benthic, heterotrophic and thecate dinoflagellate genus that has a smaller epitheca and larger hypotheca. The genus contains 24 described species, but is considered to be polyphyletic based on morphological characters and molecular phylogenetics. In this study, two new species were discovered from two distant sampling localities, Amphidiniopsis crumena sp. nov. from Japan, and Amphidiniopsis nileribanjensis sp. nov., from Australia. These species have a uniquely shaped, additional second postcingular plate. Both species are dorsoventrally flattened, an apical hook is present, and have six postcingular plates. The plate formula is: APC 4′ 3a 7″ ?C 4?S 6″′ 2″″. The cells of these species were examined with LM and SEM, and molecular phylogenic analyses were performed using 18S and 28S rDNA. These species are distinguished by the presence of spines on the hypotheca and touching of the sixth postcingular plate and the anterior sulcal plate. Their shape and disposition of several thecal plates also differ. Molecular phylogenetic analyses showed that the two new species formed a monophyletic clade and did not belong to any morphogroup proposed by previous studies. Considering the morphological features and the molecular phylogenetic results, a new morphogroup is proposed, Amphidiniopsis morphogroup VI (‘crumena group’).  相似文献   

7.
Heterocapsa circularisquama Horiguchi sp. nov. is described from Ago Bay, central Japan. The dinoflagellate produced large-scale red tides in the bays of central and western Japan and caused mass mortality of bivalves, notably the pearl oysters. The cell is small and is composed of a conical epitheca and a hemi-spheroidal hypothecs. The chloroplast is single and is connected to the single pyrenoid. The nucleus is elongated and is located in the left side of the cell. Thecal plate arrangement has been determined as: Po, cp, 5′, 3a, 7″, 6c, 5s, 5″′, 2″″. Heterocapsa circularisquama is morphologically very similar to Heterocapsa illdefina and it is almost impossible to distinguish these two species at light microscopical level. The characteristics which can be used to distinguish these two species are the morphology of body scales and the ultrastructure of the pyrenoid matrix. The body scales of H. circularisquama possess six radiating ridges on the circular basal plate; no such ridges can be observed on the roughly triangular basal plate of the scales of H. illdefina. Furthermore, the scales of the latter species possess substantially shorter spines compared to those of H. circularisquama. The pyrenoid matrix of H. circularisquama is hardly perforated by cytoplasmic tubules, while in H. tlldefina the pyrenoid matrix is always penetrated by many cytoplasmic tubules. Based on the arrangement of thecal plates, morphology of body scales, and ultra-structure of the pyrenoid, I am placing H. circularisquama sp nov. into the genus Heterocapsa.  相似文献   

8.
This study indicates that bilaterally flattened, armored, benthic dinoflagellates are more diverse in morphology than previously known. A new species, Plagiodinium belizeanum Faust et Balech gen. et. sp. nov., is described in floating detritus from Twin Cays, Belize, mangrove habitats. Plagiodinium belizeanum cells are small, with dimensions of 26.5–30.5 μm in length, 20–24.5 μm in width, and 6.5–8.5 μm in depth. Cells are oblong and bilaterally compressed with a posteriorly located, spherical nucleus, many chloroplasts, and spherical starch granules. The epitheca descends ventrally, is cap-shaped, and is composed of five plates and a very small platelet provisionally named P0 situated in the center. The epitheca is narrowly oval in apical view with a pointed truncated ventral side and a rounded dorsal side. The cingulum is composed of five plates. The hypotheca is constructed of five posteriorly elongated postcingular plates and one antapical plate. The sulcus is very short and narrow, comprised of five very small plates. The thecal plate arrangement of P. belizeanum is P0, 5′, O″, 5C, 5″′, 1″″, 5S. No lists are present. Thecal plates have a smooth surface with small and irregularly scattered pores. The intercalary band is smooth on outer cell surface and broadly striated on its inner surface. We conclude that P. belizeanum represents a new, benthic, peridinioid, armored genus, Plagiodinium gen. nov. The taxonomic position of P. belizeanum sp. nov. is compared to related sand-dwelling and bilaterally flattened benthic dinoflagellates.  相似文献   

9.
The phylogeny of Rhinodinium broomeense, a new genus and species of heterotrophic peridinioid dinoflagellates, has been studied based on morphological and molecular genetic data. The genus was found in tidal marine sand habitats in Broome, north‐western Australia, and from three marine sand habitats in Japan. The thecal plate formula is Po 3′ 1a 5″ 4c ?s 5″′ 1″″. A large apical hook points toward the dorsal side. Its plate pattern is similar to species of the genus Roscoffia; however, it differs from that genus in its much larger epitheca, narrow cingulum, which could be interpreted as incomplete, the narrow sulcus without sulcal lists on both sides, and the strong oblique lateral compression. Phylogenetic analyses using partial LSU rDNA sequences, as well as plate pattern information, support the placement of this genus in the Peridiniales; however, it is sufficiently different from other genera that the family affinity remains unclear.  相似文献   

10.
The newly described toxic dinoflagellate Pfiesteria piscicida is a polymorphic and multiphasic species with flagellated, amoeboid, and cyst stages. The species is structurally a heterotroph; however, the flagellated stages can have cleptochloroplasts in large food vacuoles and can temporarily function as mixotrophs. The flagellated stage has a typical mesokaryotic nucleus, and the theca is composed of four membranes, two of which are vesicular and contain thin plates arranged in a Kofoidian series of Po, cp, X, 4′, 1a, 5″, 6c, 4s, 5″′, and 2″″. The plate tabulation is unlike that of any other armored dinoflagellate. Nodules often demark the suture lines underneath the outer membrane, but fixation protocols can influence the detection of plates. Amoeboid benthic stages can be filose to lobose, are thecate, and have a reticulate or spiculate appearance. Amoeboid stages have a eukaryotic nuclear profile and are phagocytic. Cyst stages include a small spherical stage with a honeycomb, reticulate surface and possibly another stage that is elongate and oval to spherical with chrysophyte-like scales that can have long bracts. The species is placed in a new family, Pfiesteriaceae, and the order Dinamoebales is emended.  相似文献   

11.
A new species, Ostreopsis labens Faust et Morton sp. nov., is described from three marine habitats: lagoonal water and lagoonal sand from the barrier reef of Belize, and associated with macroalgae from coral reef habitats of Oshigaki and Iriomote Islands, Japan. Dimensions of Ostreopsis labens cells are 60–86 μm long, 70–80 μm wide, and 81–110 μm in dorsoventral depth. Cells are broadly ovoid, anterioposteriorly compressed bearing a spherical nucleus and many chloroplasts. The epitheca is convex and composed of three apical plates, seven precingular plates, and an apical pore plate. The cingulum is composed of six plates. The hypotheca is constructed of five postcingular plates, one posterior intercalary, and two antapical plates. The sulcus is small, recessed, and hidden and exhibits a ventral pore and a ridged, curved plate. The thecal arrangement of O. labens is Po, 3′, 7″ 6C, 6S(?), Vp, Rp, 5″, 1p, 2″. Only one sulcal list is present. The thecal plates have a smooth surface with distinct round pores. The intercalary band between the thecal plates is smooth. A row of marginal pores line the lipped cingulum. Ostreopsis species are anteroposteriorly flattened, photosynthetic, benthic dinoflagellates that are more diverse in ecology than previously known. Ostreopsis labens is capable of living in three marine habitats: in the water column, in sand, and on macroalgal surfaces. It was most numerous in sand and less in lagoonal waters, and only a few cells were associated with macroalgae. Light and scanning electron microscopy studies revealed engulfed cells within O. labens, which indicates mixotrophic/phagotrophic behavior. A ventral opening situated in the cingulum of O. labens exhibits size variability; it may serve as an opening for engulfiing food particles because it varies in size. We propose that ingestion of prey by O. labens occurs through the ventral opening, the proposed feeding apparatus of this species, which is similar to the function of the peduncle-like structure of mixotrophic dinoflagellates. The behavior of O. labens appears similar to that previously described for Dinophysis species.  相似文献   

12.
A new armored dinoflagellate species, Heterocapsa psammophila Tamura, Iwataki et Horiguchi sp. nov. is described from Kenmin‐no‐hama beach, Hiroshima, Japan using light and electron microscopy. This dinoflagellate possesses the typical thecal plate arrangement of the genus Heterocapsa, Po, cp, 5′, 3a, 7′′, 6c, 5s, 5′′′, 2′′′′; and the 3‐D body scales of Heterocapsa on the plasma membrane. The cell shape is ovoidal. The spherical nucleus and the pyrenoid are situated in the hypotheca and the epitheca, respectively. The ultrastructure of H. psammophila is typical of dinoflagellates and the pyrenoid is invaginated by cytoplasmic tubules. H. psammophila is distinguished from all other hitherto‐described Heterocapsa species by the cell shape, the relative position of the nucleus and pyrenoid and the structure of the body scale. The habitat and behavior of this new species in culture suggest that the organism is truly a sand‐dwelling species.  相似文献   

13.
Three Thecadinium species, independently described as new in three separate publications, are actually regarded as conspecific. The combined plate formula is Po 3′ 1a 6″ 5‐7/8c 5s 6″′ 2″″. The size range of the species is 38–65 l m in length and 23–42 lm in depth. It has one or two strongly lobed chloroplasts. The correct name of the species is Thecadinium yashimaense Yoshimatsu, Toriumi et Dodge 2004. Thecadinium mucosum Hoppenrath et Taylor 2004 and Thecadinium foveolatum Bolch 2004 are taxonomical synonyms. This note clarifies the plate tabulation and other features of the species.  相似文献   

14.
The gonyaulacoid dinofiagellate Alexandrium satoanum Yuki et Fukuyo sp. nov. is described from Matoya Bay, Pacific coast of central Japan. The species is distinctive in its conical epitheca with almost straight sides and dorsal concavity of the hypotheca. The plate formula is Po, pc, 4′, 6″, 6c, 10s, 5″″, and 2″″, including two accessory plates inside the sulcus. The apical pore plate is triangular and possesses an anterior attachment pore at the right margin. The first apical plate does not make contact with the apical pore plate and lacks a ventral pore. A posterior attachment pore lies at the center of the posterior sulcal plate. In Matoya Bay, vegetative cells occur as solitary cells or sometimes in pairs during late spring and early summer in low concentrations. In connection with this study, the following new combination is proposed: Alexandrium pseudogonyaulax (Biecheler) Horiguchi ex Yuki et Fukuyo comb. nov.  相似文献   

15.
A small, broadly ovoidal and heterotrophic dinoflagellate containing round, brownish, and spiny cyst was found in the water column of Huibertsplaat in the Wadden Sea off the coast of the Netherlands. This dinoflagellate had these conspicuous morphological characters: a five‐sided first apical plate (1′), only three cingular plates, and an extremely small first antapical plate. Based on these morphological features, Protoperidinium tricingulatum Kawami, vanWezel, Koeman et Matsuoka is described as a new species. The flagellar pore of P. tricingulatum is covered with a small fin, which rises from the left side of the right sulcal plate to the large V‐shaped posterior sulcal plate. This feature suggests that P. tricingulatum is assigned to the Abé's Monovela Group. The cyst stage of P. tricingulatum was positively linked to the vegetative stage by comparison of the ribosomal 5.8S rDNA, internal transcribed spacers (ITS1 and ITS2). Living cysts of P. tricingulatum are round, brownish, and covered with many slender spines bearing capitate or cauliforate distal ends. The cyst also possesses a theropylic archeopyle formed by a slit corresponding to parasutures between three apical and two apical intercaraly plates. These morphological characters indicate that this species is morphologically related to two dinoflagellate cyst‐genera Islandinium and Echinidinium.  相似文献   

16.
A new dinoflagellate, Scrippsiella arenicola Horiguchi et Pienaar sp. nov., is described from tidal pools with sandy substrates along the east coast of South Africa. S. arenicola exhibits a vertical migratory rhythm which is in synchrony with the tidal cycle. It is a medium-sized armoured dinoflagellate with many rod-shaped chloroplasts. Thecal plate arrangement is pp, x, 4′, 3a, 7′, 6c, 5′, 2″ and 4s. The 2a and 3a plates are separated from each other. S. arenicola has several unique ultrastructural features. Electron-dense fibres are found on the protruded part of the thecal plates, such as on the ornamental projections or extremities of the lists. In addition to the 9 + 2 axoneme, additional fibres are found in the free moving part of the longitudinal flagellum. The portion of the transverse flagellum covered by the left sulcal list possesses a dense array of mastigonemes which connect the flagellum and the cell. The flagellar pore platelets differ from ordinary thecal plates in their thickness and fibrous nature. The ultrastructure of the apical stalk and its associated structures is described. The vertical migration and mode of cell division is also described.  相似文献   

17.
Dinoflagellate associations, including toxic and potentially toxic benthic species, were examined in sand from South Water Cay and Carrie Bow Cay, Belize. The inshore sand habitat in localized areas of warm shallow lagoonal waters supported blooms of toxic assemblages of dinoflagellates. In the sand, the dominant microalgae were dinoflagellates; cyanobacteria were a minor component and diatoms were absent. Ciliates and nematodes were present. Assemblages of microorganisms in colored sand were examined for 4 consecutive days after which a storm washed away the patch. The sand-dwelling dinoflagellate assemblage included 16 species where densities ranged from as low as 1.3% to 15% of total cell densities. The dominant species was Scrippsiella subsalsa, having 1.8 × 105 to 2.6 × 105 cells g-1 sand. Toxic dinoflagellates identified in the sand were Gambierdiscus toxicus, Ostreopsis lenticularis, Prorocentrum lima, Prorocentrum mexicanum, and Amphidinium carteri. The potentially toxic Ostreopsis labens, Gambierdiscus belizeanussp. nov., and Coolia tropicalis sp. nov. were also identified. Toxic and potentially toxic species represented 36% to 60% of total microalgal cell assemblage. The morphology of a new sand-dwelling species, Gambierdiscus belizeanus sp. nov., was examined with the scanning electron microscope. The plate formula was Po, 3′, 7″, 6c, s?, 5?, 1p, and 2″″.Dimensions of G. belizeanus cells were 53–67 pm long, 54–63 μm wide, and 92–98 μm in dorsoventral depth. Cells were deeply areolated, ellipsoid in apical view, and compressed anteroposteriorly. The cells of G. belizeanus were identified by the cell's long, narrow, pentagonal, posterior intercalary plate (1p) wedged between the wide postcingular plates 2″’and 4″; 1p occupied 20% of the width of the hypotheca. The plate formula for Coolia tropicalis sp. nov. was Po, 3′, 7″, 7c, 8s?, 5″″, and 2″″, Cell size ranges were 23–40 μm long, 25–39 μm wide, and 35–65 μm in dorsoventral diameter. Cells were spherical, smooth, and covered with scattered round pores. The epitheca was smaller than the hypotheca. Precingular plates 1″ and 7″ were small and narrow, and the first apical plate 1″ and precingular plate 6″ were the largest plates on the epitheca. The apical pore was straight and 7 μm long, and was situated in the apical plate complex. Cells of C. tropicalis were distinguished from C. monotis by the wedge-shaped plate 1′, a four-sided 3’plate, and a short apical pore.  相似文献   

18.
A new photosynthetic, sand‐dwelling marine dinoflagellate, Ailadinium reticulatum gen. et sp. nov., is described from the Jordanian coast in the Gulf of Aqaba, northern Red Sea, based on detailed morphological and molecular data. A. reticulatum is a large (53–61 μm long and 38–48 μm wide), dorsoventrally compressed species, with the epitheca smaller than the hypotheca. The theca of this new species is thick and peculiarly ornamented with round to polygonal depressions forming a foveate‐reticulate thecal surface structure. The Kofoidian thecal tabulation is APC (Po, cp), 4′, 2a, 6′′, 6c, 4s, 6′′′, 1p, 1′′′′ or alternatively it can be interpreted as APC, 4′, 2a, 6′′, 6c, 4s, 6′′′, 2′′′′. The plate pattern of A. reticulatum is noticeably different from described dinoflagellate genera. Phylogenetic analyses based on the SSU and LSU rDNA genes did not show any supported affinities with currently known thecate dinoflagellates.  相似文献   

19.
A new thecate, photosynthetic, sand‐dwelling marine dinoflagellate, Laciniporus arabicus gen. et sp. nov., is described from the subtidal sediments of the Omani coast in the Arabian Sea, northern Indian Ocean, based on detailed morphological and molecular data. Cells of L. arabicus are small (16.2–30.1 μm long and 13.1–23.2 μm wide), dorsoventrally compressed, with a small apical flap‐shaped projection pointing to the left. The thecal plate pattern is distinguished by minute first precingular plate and sulcus, which extends into the epitheca, with large anterior and right sulcal plates. The Kofoidian thecal tabulation is Po, X, 4′, 2a, 7′′, 6c, 6s, 5′′′, 2′′′′. Morphologically, the revealed plate pattern has an affinity to the Peridiniales, and LSU rDNA based phylogenetic analyses placed L. arabicus within the Thoracosphaeraceae, close to calcareous‐cyst producing scrippsielloids, predatory pfiesteriaceans, and photosynthetic freshwater peridinioids Chimonodinium lomnickii and Apocalathium spp. However, the thecal plate arrangement of L. arabicus differs noticeably from any currently described dinoflagellates, and the species stands out from closely related taxa by extensive differences in physiology and ecology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号