首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms and kinetics of NH(4)OH-KOH mixture pulping rice straw were studied. When aqueous ammonia was mixed with a small amount of caustic potash (ratio of 1:5), three distinct delignification phases were observed in the pulping process: a bulk delignification phase from the beginning of the cooking period to 100 degrees C, a supplementary delignification phase from 100 degrees C to 155 degrees C lasting a further 45 min, and a residual delignification phase until the end of the cooking period. There were two silica removal phases; the first phase was from the beginning of the cooking period to 100 degrees C and the second phase was from 100 degrees C to the end of the cooking period. The rate of delignification reaction was first order with respect to residual lignin and 0.3 order with respect to [OH(-)]. The silica removal was pseudo-first-order with respect to residual silica and 0.6 order with respect to [OH(-)]. The activation energies of the delignification and removal of silica reactions were 35.6 and 30.9 kJ/mol, respectively.  相似文献   

2.
Pan X  Sano Y 《Bioresource technology》2005,96(11):1256-1263
Fractionation of wheat straw was investigated using an atmospheric acetic acid process. Under the typical conditions of 90% (v/v) aqueous AcOH, 4% H(2)SO(4) (w/w, on straw), ratio of liquor to straw (L/S) 10 (v/w), pulping temperature 105 degrees C, and pulping time 3h, wheat straw was fractionated to pulp (cellulose), lignin and monosaccharides mainly from hemicellulose with yields of approximately 50%, 15% and 35%, respectively. Acetic acid pulp from the straw had an acceptable strength for paper and could be bleached to a high brightness over 85% with a short bleaching sequence. Acetic acid pulp was also a potential feedstock for fuels and chemicals. The acetic acid process separated pentose and hexose in wheat straw to a large extent. Most of the pentose (xylan) was dissolved, whereas the hexose (glucan) remained in the pulp. Approximately 30% of carbohydrates in wheat straw were hydrolyzed to monosaccharides during acetic acid pulping, of which xylose accounted for 70% and glucose for 12%. The acetic acid lignin from wheat straw showed relatively lower molecular weight and fusibility, which made the lignin a promising raw material for many products, such as adhesive and molded products.  相似文献   

3.
The pulping of wheat straw with dimethyl formamide was studied in order to investigate the effects of the cooking variables (temperature (190 degrees C, 200 degrees C, and 210 degrees C) and time (120 min, 150 min, and 180 min) and organic solvent ratio (30%, 50%, and 70%) dimethyl formamide (DMF+water) value) on the degradation of cellulose and degree of polymerization (DP) of organosolv pulp. The SCAN viscosity was applied to estimating the extent of cellulose degradation produced by cooking condition and then, it was compared with Kraft pulp at equal Kappa number. Response of pulp and handsheets properties to the process variables were analyzed using statistical software (MINITAB 14). The process variables (cooking temperature and cooking time) must be set at low variables with high DMF ratio in order to ensure a high yield and high SCAN viscosity. Also, pulps with high mechanical properties can be acceptably obtained at 210 degrees C for 150 min with 50% DMF. Generally, the cooking temperature was a significant factor while the cooking time and DMF ratio had a smaller role. By the comparison of Kraft and organosolv pulp, it can be resulted that DMF basically had improvement role on reducing of cellulose degradation by reason of high SCAN viscosity of organosolv pulp than Kraft pulp under equal kappa number and, scanning electron microscopy (SEM) of obtained pulp. Consequently, the protective action of organic solvent on non-cellulosic polysaccharides of wheat straw against degradation under Kraft pulping conditions was pointed as a main reason of the fairly high yield of organosolv pulps.  相似文献   

4.
A central composite design was used to investigate the influence of the cooking conditions (time, temperature and phenol concentration) for wheat straw with phenol-water mixtures on the properties of the pulp obtained (yield and holocellulose, -cellulose, lignin and ethanol-benzene extractable contents) and the pH of the resulting wastewater. A second-order polynomial model consisting of three independent process variables was found to accurately describe the organosolv pulping of wheat straw. The equations derived predict the yield, the holocellulose, -cellulose, lignin and ethanol-benzene extractable contents of the pulp, and the pH of the wastewater with multiple-R, R2 and adjusted-R2 high values. The process variables must be set at low variables in order to ensure a high yield and pH. Conversely, if high holocellulose and -cellulose contents, and low lignin and ethanol-benzene extractable contents are desired, then a high temperature (200°C), long cooking time (120 min), and intermediate phenol concentration (65%) must be used.  相似文献   

5.

Background

Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor.

Findings

Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs) using random amplified polymorphic DNA-PCR profiles (RAPD). Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l−1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l−1 (27.3%) CODcr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE) and gas chromatography/mass spectrometry (GC/MS) analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions.

Conclusions/Significance

Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment. Facilitating the treatment process by the constructed consortium would provide a promising opportunity to reduce the pollution, as well as to save forest resources and add value to a waste product.  相似文献   

6.
The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.  相似文献   

7.
The influence of lignin, lignin model compounds, and black liquor from the kraft pulping process on the hydrolysis of xylan by xylanase was investigated. Addition of vanillic acid, acetovanillone, and protocatechuic acid increased the rate of hydrolysis of xylan by as much as 18–50% at low concentrations, but reached maxima at about 0.05% concentration. Addition of vanillin caused a 15% improvement in xylan hydrolysis, while addition of guaiacol more than doubled the hydrolysis rate. Increasing concentrations of either lignin or black liquor also increased the hydrolysis rate of xylan. Circular dichroism spectroscopy indicated a change in the structure of xylanase in the presence of black liquor.  相似文献   

8.
Ceriporiopsis subvermispora was used for biochemical pulping of agricultural residues and the results were compared with chemical pulping. Independent variables were screened by Plackett-Burman and optimized by full factorial experimental designs. Biological treatment of rice, wheat and barley straw samples resulted in decrease of the kappa number of these straws by 34%, 21% and 19%, respectively, as compared with controlled samples. The tensile strength and burst factor of hand sheets produced from rice straw were increased by 51% and 33% as compared with the control straws. The tensile strength and burst factor of hand sheets produced from wheat straws were improved by 67% and 36%, these variables for barely straws were 36.7% and 45%, respectively. Although the delignification of wheat and barley straws are not as efficient as chemical process, but the quality of papers produced by biochemical pulping of straws were excellent.  相似文献   

9.
Autohydrolysis and ethanol-alkali pulping were used as pretreatment methods of wheat straw for its subsequent saccharification by Trichoderma reesei cellulase. The basic hydrolysis parameters, i.e., reaction time, pH, temperature, and enzyme and substrate concentration, were optimized to maximize sugar yields from ethanol-alkali modified straw. Thus, a 93% conversion of 2.5% straw material to sugar syrup containing 73% glucose was reached in 48 h using 40 filter paper units/g hydrolyzed substrate. The pretreated wheat straw was then fermented to ethanol at 43 degrees C in the simultaneous saccharification and fermentation (SSF) process using T. reesei cellulase and Kluyveromyces fragilis cells. From 10% (w/v) of chemically treated straw (dry matter), 2.4% (w/v) ethanol was obtained after 48 h. When the T. reesei cellulase system was supplemented with beta-glucosidase from Aspergillus niger, the ethanol yield in the SSF process increased to 3% (w/v) and the reaction time was shortened to 24 h.  相似文献   

10.
The pulping byproducts (black liquor) cause serious environmental problem due to its high pollution load. In order to search the degradability of black liquor, the potential bacterial strains Citrobacter freundii (FJ581026) and Citrobacter sp. (FJ581023) were applied in axenic and mixed condition. Results revealed that the mixed bacterial culture are more effective than axenic condition and can reduce 82% COD, 79% AOX, 79% color and 60% lignin after 144 h of incubation period. Additionally, the optimum activity of lignin degrading enzyme was noted at 96 h and characterized as manganese peroxidase (MnP) by SDS–PAGE analysis. Further, the HPLC analysis of control and bacterial degraded sample has shown the reduction as well as shifting of peaks compared to control indicating the degradation as well as transformation of compounds of black liquor. The comparative GC–MS analysis of control and degraded black liquor revealed that along with lignin fragment some chlorophenolic compounds 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol and pentachlorophenol were detected in black liquor degraded by axenic culture whereas these chlorophenolic compounds were completely absent in black liquor degraded by mixed bacterial culture. These chlorophenol inhibit the oxidative degradation which seems a major reason behind the low degradability of axenic degradation compared to mixed culture. The innovation of this aerobic treatment of alkaline black liquor opens additional possibilities for the better treatment of black liquor along with its metabolic product.  相似文献   

11.
不同施肥模式下夏玉米田间土壤氨挥发规律   总被引:21,自引:0,他引:21  
利用通气法田间原位试验,研究了不同施肥模式对夏玉米田间土壤氨挥发的影响.结果表明:单施化肥与秸秆还田配施化肥处理的田间氨挥发速率日变化与白天田间土壤表层温度(简称地温)变化表现基本一致,呈现由低到高的"单峰"趋势.夏玉米田间氨挥发损失的高峰期主要发生在白天11:00~13:00.但持续时间较短,单施化肥与秸秆还田配施化肥处理均在氮肥施入当天田间氨挥发速率达最高值,此后迅速降低,氨挥发损失主要集中于前7d,累计氨挥发量占总量的88.57%~96.72%.与单施化肥相比,秸秆还田配施化肥可显著减少氨挥发损失4.06~8.25 kg · hm-2,氨挥发损失率降低0.37%~1.17%.夏玉米大喇叭口期后对氮素需求较多,较高的田间土壤持水量均可以削弱氨挥发损失.确定适宜的秸秆与氮肥配比量,适量增加大喇叭口期的氮肥追施量配合及时浇水,是提高氮肥利用效率的有效途径之一.  相似文献   

12.
Lignin contained in pulping liquor that is generated during the pulping process for papermaking is a disposal problem for the pulp and paper industry. Separating lignin and other organic components from pulping liquor with inorganic acids may improve its applicability to fields as a beneficial soil amendment while offering a potential disposal alternative. Sulfuric acid-precipitated lignin from rice straw pulping liquor applied at rates of 1.67 and 3.34 g C kg(-1) soil was incubated to evaluate its effects on soil properties over 8 weeks of incubation. Addition of this acid-precipitated lignin at these rates decreased soil pH by 0.24-0.53 units over 8 weeks of incubation, suggesting that this sulfuric acid-precipitated lignin from pulping liquor may have potential as a soil acidifying agent. Soil electrical conductivity (EC) only increased by up to 0.36 d Sm(-1), but highest EC levels were less than 4 d Sm(-1), indicating that lignin applied at both rates would not cause salinity problems. Application of this lignin increased soil organic C by 1.46 and 3.13 g C kg(-1), and total soil N by 0.07 and 0.17 g N kg(-1) over the incubation period. Lignin improved the macroaggregation of >2mm size fraction, and increased wet microaggregate stability of >2mm and 0.5-0.25 mm aggregates compared to a nonamended control. The results of this study suggest that this acid-precipitated lignin from pulping liquor may have potential as a beneficial soil amendment.  相似文献   

13.
《Process Biochemistry》2014,49(8):1231-1237
The fermentability of four different side streams produced in sulfite pulping has been compared in ethanol production with Saccharomyces cerevisiae. The results show that the fermentability of the different side streams varies, depending on where in the process they are produced, and the additional treatment applied to them. Side streams spent sulfite liquor, spent sulfite liquor derivative and spent sulfite liquor after ethanol fermentation that were fermentable benefited from the main cooking process, during which 90% of the sulfite was removed, whereas the side stream produced in the first cooking step, containing 11.0 g/L sulfite, was unfermentable. The fermentation of the side streams resulted in lower yields and productivity than fermentation in a defined medium. Furthermore, the fermentability of the side streams was improved after over-liming, evaporation, and laccase treatment. Over-liming was the most efficient means of detoxifying the side-streams, resulting in better fermentability. Sulfite treatment, however, had a counterproductive effect on fermentation due to the toxicity of this chemical to yeast metabolism. When the side-streams were detoxified by over-liming, loss of sugars was observed. Laccase treatment was less efficient, but it should be further explored as it offers a sustainable method of detoxifying side streams in situ.  相似文献   

14.
The information presented in this publication represents current research findings on the production of glucose and xylose from straw and subsequent direct fermentation of both sugars to ethanol. Agricultural straw was subjected to thermal or alkali pulping prior to enzymatic saccharification. When wheat straw (WS) was treated at 170 degrees C for 30-60 min at a water-to-solids ratio of 7:1, the yield of cellulosic pulp was 70-82%. A sodium hydroxide extration yielded a 60% cellulosic pulp and a hemicellulosic fraction available for fermentation to ethanol. The cellulosic pulps were subjected to cellulase hydrolysis at 55 degrees C for production of sugars to support a 6-C fermentation. Hemicellulose was recovered from the liquor filtrates by acid/alcohol precipitation followed by acid hydrolysis to xylose for fermentation. Subsequent experiments have involved the fermentation of cellulosic and hemicelluosic hydrolysates to ethanol. Apparently these fermentations were inhibited by substances introduced by thermal and alkali treatment of the straws, because ethanol efficiencies of only 40-60% were achieved. Xylose from hydrolysis of wheat straw pentosans supported an ethanol fermentation by Pachysolen tannophilus strain NRRL 2460. This unusual yeast is capable of producing ethanol from both glucose and xylose. Ethanol yields were not maximal due to deleterious substances in the WS hydrolysates.  相似文献   

15.

Purpose

Lignin is a by-product of wood pulping that is normally used as fuel on-site (black liquor), but also has some applications in the field of new biomaterials. This study focuses on the life cycle inventory of lignin originating from the kraft pulping process, for polymer applications. The system boundary includes lignin precipitation from black liquor, washing, and drying, but excludes subsequent application-specific compatibilization modifications. Lignin transportation is considered to rely exclusively on trucking.

Methods

This work is based on the ecoinvent v2.2 database and the IMPACT 2002+ impact assessment method. Special attention is given to the net effect of lignin precipitation on the mass and energy balances of the kraft process. Because the kraft black liquor supply will far exceed the demand for non-fuel uses for the foreseeable future, it is considered appropriate to use either the marginal variation method of physical allocation or a system boundary expansion. Consequently, the system boundary includes natural gas as a substitute fuel (when applicable) but excludes wood harvesting and the pulping process.

Results and discussion

The main impacts of kraft lignin come from the natural gas subsystem (fuel substitution and drying) despite a significantly cleaner combustion than for black liquor. Other significant contributors include the production of carbon dioxide for precipitation, sulfuric acid for washing, and sodium hydroxide to make up for sodium losses, all of which have some improvement potential.

Conclusions

The environmental profile of kraft lignin tends to be preferable to synthetic organic compounds of similar molecular complexity because its initial transformation chain is relatively energy efficient. It is thus an environmentally sound choice for polymer applications as long as near-unity substitution ratios can be achieved without requiring compatibilization modifications that are too environmentally intensive and without affecting other stages of the product life cycle. In particular, the end-of-life performance depends on long-term lignin sequestration.  相似文献   

16.
Zhao J  Li X  Qu Y 《Bioresource technology》2006,97(13):1470-1476
Crude enzymes produced by different strains were used in the production of bleached wheat straw pulp. Pre-treatment with enzymes from Penicillium A10 and Aspergillus L22 at a xylanase dosage of 4 IU/g prior to pulping decreased pulp kappa number by 6.29% and 12.07% respectively as compared to the control. High cellulase activity in crude enzymes has a negative influence on pulping. Xylanase pre-bleaching reduced chlorine charge by 20-30%, or increased final brightness by approximately 4-5% ISO, and improved the pulp strength properties. Xylanase could substitute for alkali extraction in CEH sequence, and be used for treating chemical-bleached pulp, which resulted in higher strength properties for bleached pulp. Modification of bleached pulp with enzymes of 3 IU/g (on xylanase) increased pulp brightness and breaking length by 3-6% ISO and 160-790 m respectively, and decreased post color number and beating degree of pulp by 29-36% and 2.5-5.5 degrees SR respectively, as compared to the original pulp.  相似文献   

17.
The effect of hot-water extraction on alkaline pulping was investigated. The properties of black liquor and pulp strength of bagasse were analyzed. The extraction was conducted at 160 °C for 30 min where 13.2% of the mass was dissolved in the extraction liquor. Untreated bagasse and extracted bagasse were digested by soda and soda-AQ processes at 17% and 15.5% (with 0.1% AQ) alkali charge (NaOH). Cooking temperatures were 160 °C and 155 °C respectively. The pulp from extracted bagasse had a lower Kappa number and a higher viscosity compared to the pulp from the untreated bagasse. The black liquor from pulping extracted bagasse had a lower solid content, a lower viscosity and a lower silica content, but a higher heating value than that from pulping of untreated bagasse. Hot-water extraction resulted in a significant decrease in bleaching chemical consumption and the formation of chlorinated organics. Pulp strength properties such as the tensile index and the burst index were found to be lower, but the tear index, bulk, opacity and pulp freeness were found to be higher when hot-water extraction was applied.  相似文献   

18.
Sulfur-free lignin, obtained through the acid precipitation of black liquor from the soda pulping process, has been tested as water reducer in mortar. It has also been compared to existing commercial additives such as naphthalene sulfonates and lignosulfonates. The ash content and sugar content of these lignins are low in comparison to lignosulfonates, conferring on them higher purity. A procedure for small scale testing derived from the industrial norms SN-EN196 and ASTM (Designation C230-90) is presented. Specifically, all the sulfur-free lignins tested improved the flow of the mortar. Selected flax lignins performed better than lignosulfonates though still less than naphthalene sulfonates. Furthermore, certain hemp lignins gave comparable results to the lignosulfonates. Overall, the straw lignin prepared herein is comparable in performance to commercially available lignins, such as Organocell, Alcell and Curan 100. The plant from which the lignin was isolated, and the process of the pulp mill are the primary influences on the performance of the lignin.  相似文献   

19.
Aspen (Populus tremuloides) and black cottonwood (Populus trichocarpa) organosolv pulps produced in a wide range of solvent composition (between 30 and 70% by volume of methanol) and catalysts (H(2)SO(4) and H(3)PO(4)) such that the cooking liquor pH 相似文献   

20.
A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号