首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signature-tagged mutagenesis is a functional genomics technique that identifies microbial genes required for infection within an animal host, or within host cells. The application of this technique to a range of microbial pathogens has resulted in the identification of novel virulence determinants in each screen performed to date, so that cumulatively several hundred genes have been ascribed a role in virulence.  相似文献   

2.
DNA signature tags (molecular barcodes) facilitate functional screens by identifying mutants in mixed populations that have a reduced or increased adaptation to a particular environment. Many innovative adaptations and refinements in the technology have been described since its original use with Salmonella; they have yielded a wealth of information on a broad range of biological processes--mainly in bacteria, but also in yeast and other fungi, viruses, parasites and, most recently, in mammalian cells. By combining whole-genome microarrays and comprehensive ordered libraries of mutants, high-throughput functional screens can now be achieved on a genomic scale.  相似文献   

3.
4.
Xu W  Wang M  Zhang X  Wang L  Feng H 《Bioinformation》2008,2(7):301-303
Gene selection is to detect the most significantly expressed genes under different conditions expression data. The current challenge in gene selection is the comparison of a large number of genes with limited patient samples. Thus it is trivial task in simple statistical analysis. Various statistical measurements are adopted by filter methods applied in gene selection studies. Their ability to discriminate phenotypes is crucial in classification and selection. Here we describe the standard deviation error distribution (SDED) method for gene selection. It utilizes variations within-class and among-class in gene expression data. We tested the method using 4 leukemia datasets available in the public domain. The method was compared with the GS2 and CHO methods. The Prediction accuracies by SDED are better than both GS2 and CHO for different datasets. These are 0.8-4.2% and 1.6-8.4% more that in GS2 and CHO. The related OMIM annotations and KEGG pathways analyses verified that SDED can pick out more 4.0% and 6.1% genes with biological significance than GS2 and CHO, respectively.  相似文献   

5.
Microalgae are now the focus of intensive research due to their potential as a renewable feedstock for biodiesel. This research requires a thorough understanding of the biochemistry and genetics of these organisms’ lipid-biosynthesis pathways. Genes encoding lipid-biosynthesis enzymes can now be identified in the genomes of various eukaryotic microalgae. However, an examination of the predicted proteins at the biochemical and molecular levels is mandatory to verify their function. The essential molecular and genetic tools are now available for a comprehensive characterization of genes coding for enzymes of the lipid-biosynthesis pathways in some algal species. This review mainly summarizes the novel information emerging from recently obtained algal gene identification.  相似文献   

6.
While enteroinvasive Escherichia coli (EIEC) and shigellae are genotypically nearly identical, a difference has been reported in the infective dose to humans: EIEC is 10,000-fold less infectious than shigellae. A possible basis for this difference lies in the inherent invasiveness of these bacteria toward epithelial cells. Thus, despite the high degree of homology between the invasion plasmids of EIEC and shigellae, substantial differences in genetic organization and/or sequence may exist. We have undertaken a systematic genetic analysis of the EIEC plasmid pSF204, using transposon mutagenesis. Congo red-negative TnphoA insertion mutants (Pcr- PhoA-) and TnphoA fusion mutants (PhoA+) were isolated and screened for the ability to invade cultured HEp-2 cells. Most invasion-negative (Inv-) mutations mapped to a 30-kb segment of the invasion plasmid, including homologs of the Shigella flexneri ipa, mxi, and spa genes. Inv- PhoA+ fusions in the EIEC ipaC, mxiG, mxiJ, mxiM, and mxiD homologs and in a proposed new gene, named invX, located downstream of the spa region were identified and characterized. This analysis indicates the presence of the ipaC, mxiG, mxiJ, mxiM, mxiD, and invX gene products in the EIEC cell envelope and demonstrates a strict requirement for these genetic loci in invasion. Overall, our results suggest a high degree of genetic, structural, and functional homology between the EIEC and S. flexneri large invasion plasmids.  相似文献   

7.
Tuberculosis remains the greatest cause of death worldwide due to a single pathogen. In order to identify the genes required for the pathogenicity of Mycobacterium tuberculosis, a functional genomic approach was developed. A library of signature-tagged transposon mutants of this bacterium was constructed and screened for those affected in their multiplication within the lungs of mice. From 1927 mutants tested, 16 were attenuated for their virulence. The insertions harboured by the selected mutants were mapped on the M. tuberculosis genome and most of the mutated loci appeared to be involved in lipid metabolism or transport across the membrane. Four independent mutations identified a cluster of virulence genes located on a 50 kb chromosomal region. These genes might be involved in the production of phthiocerol and phenolphthiocerol derivatives, a group of molecules restricted to eight mycobacterial species, seven of them being either strict or opportunistic pathogens. The interaction of five mutant strains with mouse bone marrow macrophages was investigated. These five mutants were still able to multiply in this cell type. However, in three cases, there was a growth defect in comparison with the wild-type strain. The other two strains exhibited no clear difference from the virulent strain, MT103, in this model. This study, which is the first global research of virulence factors of M. tuberculosis, opens the way to a better understanding of the molecules that are key players in the interaction of this pathogen with its host.  相似文献   

8.
Insertional mutagenesis is a potent forward genetic screening technique used to identify candidate cancer genes in mouse model systems. An important, yet unresolved issue in the analysis of these screens, is the identification of the genes affected by the insertions. To address this, we developed Kernel Convolved Rule Based Mapping (KC-RBM). KC-RBM exploits distance, orientation and insertion density across tumors to automatically map integration sites to target genes. We perform the first genome-wide evaluation of the association of insertion occurrences with aberrant gene expression of the predicted targets in both retroviral and transposon data sets. We demonstrate the efficiency of KC-RBM by showing its superior performance over existing approaches in recovering true positives from a list of independently, manually curated cancer genes. The results of this work will significantly enhance the accuracy and speed of cancer gene discovery in forward genetic screens. KC-RBM is available as R-package.  相似文献   

9.
Four known and nine new ceftazidime-resistance beta-lactamases were generated by a novel, contaminating codon-based mutagenesis approach. In this method, wild-type codons are spiked with a set of mutant codons during oligonucleotide synthesis, generating random combinatorial libraries of primers that contain few codon replacements per variant. Mutant codons are assembled by tandem addition of a diluted mixture of five Fmoc-dimer amidites to the growing oligo and a mixture of four DMTr-monomer amidites to generate 20 trinucleotides that encode a set of 18 amino acids. Wild-type codons are assembled with conventional chemistry and the whole process takes place in only one synthesis column, making its automation feasible. The random and binomial behavior of this approach was tested in the polylinker region of plasmid pUC19 by the synthesis of three oligonucleotide libraries mutagenized at different rates and cloned as mutagenic cassettes. Additionally, the method was biologically assessed by mutating six contiguous codons that encode amino acids 237-243 (ABL numbering) of the TEM(pUC19) beta-lactamase, which is functionally equivalent to the clinically important TEM-1 beta-lactamase. The best ceftazidime-recognizing variant was a triple mutant, R164H:E240K: R241A, displaying a 333-fold higher resistance than the wild-type enzyme.  相似文献   

10.
The inability of many higher eukaryotes to convert 5-fluorocytosine to cytotoxic 5-fluorouracil presents the possibility of using the bacterial cytosine deaminase codA gene for negative selection. In transformed plant callus, expression of codA results in cell death on 5-fluorocytosine. In transgenic tobacco and Lotus japonicus plants the substrate-dependent negative marker segregates as a single dominant gene, and on 5-fluorocytosine CodA+ seedlings stop growing at the early seedling stage. Positive selection of CodA+ tobacco on the pyrimidine biosynthetic inhibitor N -(phosphonacetyl)- l -aspartate was obtained, by pyrimidine salvage from external cytosine. Activity of cytosine deaminase was determined by conversion of labelled cytosine to uracil followed by separation in thin layer chromatography. The codA marker therefore provides substrate-dependent negative and positive selection, together with cytosine deaminase reporter activity.  相似文献   

11.
To successfully treat cancer we will likely need a much more detailed understanding of the genes and pathways meaningfully altered in individual cancer cases. One method for achieving this goal is to derive cancers in model organisms using unbiased forward genetic screens that allow cancer gene candidate discovery. We have developed a method using a “cut-and-paste” DNA transposon system called Sleeping Beauty (SB) to perform forward genetic screens for cancer genes in mice. Although the approach is conceptually similar to the use of replication competent retroviruses for cancer gene identification, the SB system promises to allow such screens in tissues previously not amenable to forward genetic screens such as the gastrointestinal tract, brain, and liver. This article describes the strains useful for SB-based screens for cancer genes in mice and how they are deployed in an experiment.  相似文献   

12.
Insertional mutagenesis with a heterologous transposon provides a method to rapidly determine the molecular identity of mutated genes. The Drosophila transposon Mos1 can be mobilized to cause mutations in Caenorhabditis elegans (Bessereau et al. 2001); however, the mutagenic rate was initially too low for use in most forward genetic screens. To increase the effectiveness of Mos1-mediated mutagenesis we examined the conditions influencing Mos1 transposition. First, optimal transposition occurs 24 hr after expression of the transposase and is unlikely to occur in differentiated sperm or oocytes. Second, transposition is limited to germ-cell nuclei that contain donor elements, but the transposase enzyme can diffuse throughout the gonad syncytium. Third, silencing of transposition is caused by changes in the donor array that occur over time. Finally, multiple transposition events occur in individual germ cells. By using screening techniques based on these results, Mos1 mutagenicity was increased to within an order of magnitude of chemical mutagens.  相似文献   

13.
Positive and negative selection in the DAZ gene family   总被引:4,自引:0,他引:4  
Because a microdeletion containing the DAZ gene is the most frequently observed deletion in infertile men, the DAZ gene was considered a strong candidate for the azoospermia factor. A recent evolutionary analysis, however, suggested that DAZ was free from functional constraints and consequently played little or no role in human spermatogenesis. The major evidence for this surprising conclusion is that the nonsynonymous substitution rate is similar to the synonymous rate and to the rate in introns. In this study, we reexamined the evolution of the DAZ gene family by using maximum-likelihood methods, which accommodate variable selective pressures among sites or among branches. The results suggest that DAZ is not free from functional constraints. Most amino acids in DAZ are under strong selective constraint, while a few sites are under diversifying selection with nonsynonymous/ synonymous rate ratios (d(N)/d(S)) well above 1. As a result, the average d(N)/d(S) ratio over sites is not a sensible measure of selective pressure on the protein. Lineage-specific analysis indicated that human members of this gene family were evolving by positive Darwinian selection, although the evidence was not strong.  相似文献   

14.
Characterization of a Salmonellatyphmurium mutant strain (TA98/1,8-DNP6) resistant to the mutagenicity of nitrated polycyclic aromatic hydrocarbons (nitroarenes) revealed that it was also non-responsive to the mutagenic action of nitroso- and N-hydroxylaminoarenes. The mutant strain was fully sensitive to the mutagenic action of the corresponding hydroxamic acid ester. These results suggest that TA98/1,8-DNP6 is deficient in a specific esterifying enzyme and that esterification of the penultimate mutagenic metabolites of nitro- and aminoarenes (e.g., arylhydroxylamines) to form potent electrophiles is controlled by a specific gene.  相似文献   

15.
Retroviral insertional mutagenesis preferentially identifies oncogenes rather than tumor suppressor (TS) genes, presumably because a single retroviral-induced mutation is sufficient to activate an oncogene and initiate a tumor, whereas two mutations are needed to inactivate a TS gene. Here we show that TS genes can be identified by insertional mutagenesis when the screens are performed in Blm-deficient backgrounds. Blm-deficient mice, like Bloom syndrome patients, have increased frequencies of mitotic recombination owing to a mutation in the RecQ protein-like-3 helicase gene. This increased mitotic recombination increases the likelihood that an insertional mutation in one allele of a TS gene will become homozygoused by non-sister chromatid exchange and the homozygosity of the insertion provides a marker for identifying the TS gene. We also show that known as well as novel TS genes can be identified by insertional mutagenesis in Blm-deficient mice and identify two JmjC family proteins that contribute to genome stability in species as evolutionarily diverse as mammals and Caenorhabditis elegans.  相似文献   

16.
17.
Conditional expression systems were utilized for the ectopic induction of essential genes in Staphylococcus aureus. Resulting strains were then subjected to allelic-replacement mutagenesis of the native allele under inducing conditions for expression of the ectopic copy of the gene. This strategy produced test strains whereby cellular viability was uniquely dependent on the presence of inducer and provided a direct and absolute confirmation of genetic essentiality for each locus. The procedure is particularly useful for genes that are difficult to analyze by conventional inactivation strategies due to either small size or complex genomic organization.  相似文献   

18.
19.
New knowledge of the microbiology and immunology of Chlamydia is reviewed. New serological and isolation methods for diagnosis of Trachoma infection are described. Results of studies of ocular and genital Trachoma infection utilizing these new techniques are presented.  相似文献   

20.

Background

Infection with Leishmania results in a broad spectrum of pathologies where L. infantum and L. donovani cause fatal visceral leishmaniasis and L. major causes destructive cutaneous lesions. The identification and characterization of Leishmania virulence genes may define the genetic basis for these different pathologies.

Methods and Findings

Comparison of the recently completed L. major and L. infantum genomes revealed a relatively small number of genes that are absent or present as pseudogenes in L. major and potentially encode proteins in L. infantum. To investigate the potential role of genetic differences between species in visceral infection, seven genes initially classified as absent in L. major but present in L. infantum were cloned from the closely related L. donovani genome and introduced into L. major. The transgenic L. major expressing the L. donovani genes were then introduced into BALB/c mice to select for parasites with increased virulence in the spleen to determine whether any of the L. donovani genes increased visceral infection levels. During the course of these experiments, one of the selected genes (LinJ32_V3.1040 (Li1040)) was reclassified as also present in the L. major genome. Interestingly, only the Li1040 gene significantly increased visceral infection in the L. major transfectants. The Li1040 gene encodes a protein containing a putative component of an endosomal protein sorting complex involved with protein transport.

Conclusions

These observations demonstrate that the levels of expression and sequence variations in genes ubiquitously shared between Leishmania species have the potential to significantly influence virulence and tissue tropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号