共查询到20条相似文献,搜索用时 0 毫秒
1.
Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes
a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the
intracellular domain of guanylyl cyclase C (GCC) inEscherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed,
GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation
of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated
guanylyl cyclases. 相似文献
2.
Dobson JG Shea LG Fenton RA 《American journal of physiology. Heart and circulatory physiology》2003,285(4):H1471-H1478
Adenosine protects the myocardium of the heart by exerting an antiadrenergic action via the adenosine A1 receptor (A1R). Because beta 1-adrenergic receptor (beta 1R) stimulation elicits myocardial protein phosphorylation, the present study investigated whether protein kinase A (PKA) catalyzed rat heart ventricular membrane phosphorylation affects the beta 1R adrenergic and A1R adenosinergic actions on adenylyl cyclase activity. Membranes were either phosphorylated with PKA in the absence/presence of a protein kinase inhibitor (PKI) or dephosphorylated with alkaline phosphatase (AP) and assayed for adenylyl cyclase activity (AC) in the presence of the beta 1R agonist isoproterenol (ISO) and/or the A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA). 32P incorporation into the protein substrates of 140-120, 43, and 29 kDa with PKA increased both the ISO-elicited activation of AC by 51-54% and the A1R-mediated reduction of the ISO-induced increase in AC by 29-50%, thereby yielding a total antiadrenergic effect of approximately 78%. These effects of PKA were prevented by PKI. AP reduced the ISO-induced increase in AC and eliminated the antiadrenergic effect of CCPA. Immunoprecipitation of the solubilized membrane adenylyl cyclase with the use of a polyclonal adenylyl cyclase VI antibody indicated that the enzyme is phosphorylated by PKA. These results indicate that the cardioprotective effect of adenosine afforded by its antiadrenergic action is facilitated by cardiac membrane phosphorylation. 相似文献
3.
J. Krupinski 《Molecular and cellular biochemistry》1991,104(1-2):73-79
Hormone-sensitive adenylyl cyclase is a model system for the study of receptor-mediated signal transduction. It is comprised of three types of components: 1) receptors for hormones that regulate cyclic AMP (cAMP) synthesis, 2) regulatory GTP binding proteins (G proteins), and 3) the family of enzymes, the adenylyl cyclases. Concentrations of cAMP are altered by at least 35 different stimulatory or inhibitory hormones and neurotransmitters. Other signalling pathways may also influence cAMP production through regulation of particular adenylyl cyclase subtypes. The second messenger, cAMP propagates the hormone signal through the effects of cAMP-dependent protein kinase.While structural information on the adenylyl cyclases is limited, a cDNA clone for a calmodulin-sensitive form of bovine brain adenylyl cyclase has been isolated. The amino acid sequence encoded by the Type I cDNA is approximately 40% identical to those specified by three other adenylyl cyclase cDNAs that have been cloned subsequently. This degree of structural variation implies that there must be functional differences between the adenylyl cyclases. 相似文献
4.
Wang C Mao X Wang L Liu M Wetzel MD Guan KL Dong LQ Liu F 《The Journal of biological chemistry》2007,282(11):7991-7996
Adiponectin functions as an insulin sensitizer, and yet the underlying molecular mechanism(s) remains largely unknown. We found that treating C2C12 myotubes with adiponectin or rapamycin enhanced the ability of insulin to stimulate IRS-1 tyrosine phosphorylation and Akt phosphorylation, concurrently with reduced p70 S6 kinase phosphorylation at Thr389 as well as IRS-1 phosphorylation at Ser302 and Ser636/639. Overexpression of dominant-negative AMP kinase (AMPK), but not dominant-negative p38 MAPK, reduced the insulin-sensitizing effect of adiponectin. Rapamycin, but not adiponectin, enhanced insulin-stimulated Akt phosphorylation in HeLa cells, which lack LKB1, and exogenous expression of LKB1 in HeLa cells rescued the insulin-sensitizing effect of adiponectin. Finally, overexpression of wild-type Rheb (Ras homology-enriched in brain) or the TSC2 mutant lacking the AMPK phosphorylation site (TSC2S1345A) inhibited the insulin-sensitizing effect of adiponectin in C2C12 cells. These results indicate that activation of the LKB1/AMPK/TSC1/2 pathway alleviates the p70 S6 kinase-mediated negative regulation of insulin signaling, providing a mechanism by which adiponectin increases insulin sensitivity in cells. 相似文献
5.
Maxine M. Chen 《Biochemical and biophysical research communications》2009,389(2):257-1685
Previously we identified threonine-1172 (T1172) in the cytoplasmic domain of the cell adhesion molecule L1 as phosphorylated in pancreatic cancer cells. Although both CKII- and PKC-blockade suppressed this modification, only CKII was capable of phosphorylating T1172 of a recombinant L1 cytoplasmic domain, suggesting the requirement for additional events to facilitate availability of T1172 to PKC. In this study, we demonstrate that the region around T1172 exists in distinct conformations based on both T1172 phosphorylation and the integrity of surrounding residues. We further demonstrate the role of membrane-proximal and membrane-distal residues in regulating cytoplasmic domain conformation, and that modification of 3 of the 4 tyrosines in the L1 cytoplasmic domain promote conformational changes that facilitate other events. In particular, phenylalanine-substitution of tyrosine-1151 or tyrosine-1229 promote opening up of the cytoplasmic domain in a manner that facilitates phosphorylation of the other 3 tyrosines, as well as phosphorylation of T1172 by PKCα. Importantly, we show that phosphorylation of serine-1181 is required for T1172 phosphorylation by CKII. These data define a specific role for secondary structure in regulating the availability of T1172 that facilitates phosphorylation by PKC. 相似文献
6.
Mammals possess a family of transmembrane, G-protein-responsive adenylyl cyclase isoforms (tmACs) encoded by distinct genes differing in their patterns of expression and modes of biochemical regulation. Our previous work confirmed that Drosophila melanogaster also possesses a family of tmAC isoforms defining the fly as a suitable genetic model for discerning mammalian tmAC function. We now describe a Drosophila tmAC, DAC39E, which employs a novel means for regulating its expression; differential exon utilization results in a developmental switch in DAC39E protein. DAC39E protein sequence is most closely related to mammalian type III AC, and it is predominantly expressed in the central nervous system (CNS) and olfactory organs, suggesting a role in processing sensory signaling inputs. DAC39E catalytic activity is inhibited by micromolar concentrations of calcium; therefore, DAC39E is oppositely regulated by calcium compared to the only other tmAC shown to be expressed in the Drosophila CNS, Rutabaga AC. The presence of both positively and negatively regulated tmACs suggests a complex mode of cross-talk between cAMP and calcium signal transduction pathways in the fly CNS. 相似文献
7.
Onda T Hashimoto Y Nagai M Kuramochi H Saito S Yamazaki H Toya Y Sakai I Homcy CJ Nishikawa K Ishikawa Y 《The Journal of biological chemistry》2001,276(51):47785-47793
Crystallographic studies have elucidated the binding mechanism of forskolin and P-site inhibitors to adenylyl cyclase. Accordingly, computer-assisted drug design has enabled us to identify isoform-selective regulators of adenylyl cyclase. After examining more than 200 newly synthesized derivatives of forskolin, we found that the modification at the positions of C6 and C7, in general, enhances isoform selectivity. The 6-(3-dimethylaminopropionyl) modification led to an enhanced selectivity for type V, whereas 6-[N-(2-isothiocyanatoethyl) aminocarbonyl] and 6-(4-acrylbutyryl) modification led to an enhanced selectivity for type II. In contrast, 2'-deoxyadenosine 3'-monophosphate, a classical and 3'-phosphate-substituted P-site inhibitor, demonstrated a 27-fold selectivity for inhibiting type V relative to type II, whereas 9-(tetrahydro-2-furyl) adenine, a ribose-substituted P-site ligand, showed a markedly increased, 130-fold selectivity for inhibiting type V. Consequently, on the basis of the pharmacophore analysis of 9-(tetrahydro-2-furyl) adenine and adenylyl cyclase, a novel non-nucleoside inhibitor, 2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone (NKY80), was identified after virtual screening of more than 850,000 compounds. NKY80 demonstrated a 210-fold selectivity for inhibiting type V relative to type II. More importantly, the combination of a type III-selective forskolin derivative and 9-(tetrahydro-2-furyl) adenine or NKY80 demonstrated a further enhanced selectivity for type III stimulation over other isoforms. Our data suggest the feasibility of adenylyl cyclase isoform-targeted regulation of cyclic AMP signaling by pharmacological reagents, either alone or in combination. 相似文献
8.
Dexras1 is a steroid hormone-induced Ras family G protein that acts as a receptor-independent activator of signaling by Gi/o family heterotrimeric G proteins. We examined the effects of Dexras1 on the activity of adenylyl cylase, a target of inhibitory regulation by Gialpha x GTP. Constitutively active Gsalpha (Q227L) increased cAMP levels 43-fold above baseline, and Dexras1 expression inhibited cAMP levels by 61% (P < 0.01). Dexras1 mediated inhibition of adenylyl cyclase was blocked by treatment pertussis toxin or by co-expression of RGS4, but was not inhibited by with dominant-interfering (G203T or G204A) mutants of Gi alpha2. Dexras1 decreased forskolin-stimulated CREB activation (P < 0.01) and this activity was also inhibited by co-expression of RGS4. These findings indicate that Dexras1 expression leads to ligand-independent activation of both Gialpha- and G(beta)gamma-dependent arms of the Gi signaling cascade, and suggest that Dexras1 may exert physiologically relevant inhibitory effects on the cAMP-PKA-CREB. 相似文献
9.
Identity of adenylyl cyclase isoform determines the G protein mediating chronic opioid-induced adenylyl cyclase supersensitivity 总被引:4,自引:0,他引:4
To determine the intracellular signal transduction pathway responsible for the development of tolerance/dependence, the ability of Gzalpha to substitute for pertussis toxin (PTX)-sensitive G proteins in mediating adenylyl cyclase (AC) supersensitivity was examined in the presence of defined AC isoforms. In transiently micro-opioid receptor (OR) transfected COS-7 cells (endogenous inhibitory G proteins: Gialpha2, Gialpha3 and Gzalpha), neither acute (1 micro mol/L) nor chronic morphine treatment (1 micromol/L; 18 h) influenced intracellular cAMP production. Coexpression of the micro -OR together with AC type V and VI fully restored the ability of morphine to acutely inhibit cAMP generation. Chronic morphine treatment further resulted in the development of tolerance/dependence, as assessed by desensitization of the acute inhibitory opioid effect (tolerance) as well as the induction of AC supersensitivity after drug withdrawal (dependence). Specific direction of micro -OR signalling via Gzalpha by both PTX treatment and Gzalpha over-expression had no effect on chronic morphine regulation of AC type V, but completely abolished the development of tolerance/dependence with AC type VI. Similar results were obtained in stably micro -OR-expressing HEK293 cells transiently cotransfected with Gzalpha and either AC type V or VI. Coprecipitation studies further verified that Gzalpha specifically binds to AC type V but not type VI. Taken together, these results demonstrate that in principle each of the OR-activated G proteins per se is able to mediate AC supersensitivity. However, they also indicate that it is the molecular nature of AC isoform that selects and determines the OR-activated G protein mediating tolerance/dependence. 相似文献
10.
Beuve A 《Methods (San Diego, Calif.)》1999,19(4):545-550
Guanylyl cyclases catalyze the formation of cGMP from GTP, but display extensive identity at the catalytic domain primary amino acid level with the adenylyl cyclases. The recent solving of the crystal structures of soluble forms of adenylyl cyclase has resulted in predictions of those amino acids important for substrate specificity. Modeling of a membrane-bound homodimeric guanylyl cyclase predicted the comparable amino acids that would interact with the guanine ring. Based on these structural data, the replacement of three key residues in the heterodimeric form of soluble guanylyl cyclase has led to a complete conversion in substrate specificity. Furthermore, the mutant enzyme remained fully sensitive to sodium nitroprusside, a nitric oxide donor. 相似文献
11.
James H Hurley 《Current opinion in structural biology》1998,8(6):770-777
New structures solved in 1997 revealed that the adenylyl cyclase core consists of a pair of catalytic domains arranged in a wreath. Homologous catalytic domains are arranged in diverse adenylyl and guanylyl cyclases as symmetric homodimers or pseudosymmetric heterodimers. The kinship of the adenylyl and guanylyl cyclases has been confirmed by the structure-based interconversion of their nucleotide specificities. Catalysis is activated when two metal-binding aspartate residues on one domain are juxtaposed with a key aspargine—arginine pair on the other. Allosteric activators of mammalian adenylyl cyclase, forskolin and the stimulatory G protein α subunit, promote the catalytically optimal juxtaposition of the two domains. 相似文献
12.
Hyun-Woo Rhee Kyoung-Shim Kim Pyung-Lim Han Jong-In Hong 《Bioorganic & medicinal chemistry letters》2010,20(3):1145-1147
In cellular signaling, adenylyl cyclase plays a key role in the hydrolysis of ATP to cyclic AMP and pyrophosphate. Using a synthetic fluorescent chemosensor (PyDPA) which binds strongly to the pyrophosphate group, we have developed a label-free fluorescent real-time detection system for adenylyl cyclase. This assay would be the first adenylyl cyclase assay based on chemosensing the production of pyrophosphate. 相似文献
13.
Dictyostelium development starts with the chemotactic aggregation of up to 10(6) amoebae in response to propagating cAMP waves. cAMP is produced by the aggregation stage adenylyl cyclase (ACA) and cells lacking ACA (aca null) cannot aggregate. Temperature-sensitive mutants of ACA were selected from a population of aca null cells transformed with a library of ACA genes, a major segment of which had been amplified by error-prone PCR. One mutant (tsaca2) that can complement the aggregation null phenotype of aca null cells at 22 degrees C but not at 28 degrees C was characterized in detail. The basal catalytic activity of the enzyme in this mutant was rapidly and reversibly inactivated at 28 degrees C. Using this mutant strain we show that cell movement in aggregates and mounds is organized by propagating waves of cAMP. Synergy experiments between wild-type and tsaca2 cells, shifted to the restrictive temperature at various stages of development, showed that ACA plays an important role in the control of cell sorting and tip formation. 相似文献
14.
Inhibition of prostaglandin synthesis by the drug indomethacin suppresses the synthesis of the cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), and leads to a metabolic state comparable to type II diabetes. It was of interest whether prostaglandin-deficiency likewise causes sensitization of adenylyl cyclase, as this has been reported for the diabetic state. In liver plasma membranes of indomethacin-treated male rats, basal and forskolin-stimulated cyclic AMP synthesis remained unchanged when compared to untreated control rats. In control rats, stimulation of cyclic AMP synthesis by fluoride (2.2-fold) or glucagon (3.5-fold) was much lower than stimulation by forskolin (6.6-fold). In contrast, in indomethacin-treated rats, stimulation of cAMP synthesis by fluoride (4.6-fold) or glucagon (5.2-fold) nearly matched the stimulation by forskolin (6.4-fold). The level of alpha1-adrenergic receptors was slightly reduced, from 450 to 320 fmol/mg protein, by the indomethacin treatment. Independent of the treatment by indomethacin, stimulation of cyclic AMP synthesis by adrenaline failed, in agreement with the low density of adrenergic beta-receptors. In conclusion, PGE deficiency sensitizes adenylyl cyclase in rat liver for G protein-coupled receptors (glucagon) and also for fluoride. 相似文献
15.
A seminal study of soluble adenylyl cyclase 总被引:1,自引:0,他引:1
Tesmer JJ 《Nature structural & molecular biology》2005,12(1):7-8
16.
17.
Alfred G. Gilman 《Bioscience reports》1995,15(2):65-97
The function and structures of G proteins and their role in the regulation of adenylyl cyclase is reviewed.The Nobel lecture given on December 8, 1994 by Dr Alfred Gilman and published inLes Prix Nobel 1994, printed by Norstedts Tryckeri, Stockholm, Sweden, republished here with the permission of the Nobel Foundation, the copyright holder. 相似文献
18.
19.
Tyrosine phosphorylation of plant tubulin 总被引:2,自引:0,他引:2
Phosphorylation of αβ-tubulins dimers by protein tyrosine kinases plays an important role in the regulation of cellular growth
and differentiation in animal cells. In plants, however, the role of tubulin tyrosine phosphorylation is unknown and data
on this tubulin modification are limited. In this study, we used an immunochemical approach to demonstrate that tubulin isolated
by both immunoprecipitation and DEAE-chromatography is phosphorylated on tyrosine residues in cultured cells of Nicotiana tabacum. This opens up the possibility that tyrosine phosphorylation of tubulin could be involved in modulating the properties of
plant microtubules. 相似文献
20.
Madhu B. Anand-Srivastava 《Molecular and cellular biochemistry》1996,157(1-2):163-170
The present studies were undertaken to examine if adenylyl cyclase activity and the levels of G-proteins (Gs and Gi) are altered in cardiovascular tissues in hypertension. Adenylyl cyclase activity and its responsiveness to stimulatory and inhibitory hormones as well as the expression of G-proteins (Gs and Gi) were determined at protein and mRNA levels by using specific antibodies and cDNA probes in hearts and aorta from 12 week old spontaneously hypertensive rats (SHR) and their age-matched control Wistar Kyoto (WKY) rats. The stimulatory effects of guanine nucleotides, isoproterenol, glucagon etc. on adenylyl cyclase activity were decreased in SHR rats as compared to the WKY rats, whereas, the inhibitory hormones inhibited enzyme activity to a grater extent in SHR rats as compared to WKY rats. Furthermore, the levels of Gi-2 and Gi-3 proteins and Gi-2 and Gi-3 mRNA as determined by immunoblotting and Northern blotting techniques respectively were higher in SHR as compared to WKY rats. However, the levels of Gsa were unaltered in SHR. To further investigate if these alterations are the cause or effect of hypertension, the SHRs at various ages of the development of blood pressure (3–5 days, 2, 4 and 8 weeks) and their age-matched WKY were used for G-protein expression and adenylyl cyclase activity. The increased expression of Gi–2 and Gi–3 protein and mRNA levels in hearts and aorta were observed as early as in 2-weeks old SHR as compared to WKY, when the blood pressure was still normal. However, the levels of Gs in SHR were not different from WKY rats. In addition, the altered responsiveness of adenylyl cyclase to hormone stimulation and inhibition was also observed as early as in 2 week old SHR. These results suggest that the increased expression of Gi–2 and Gi–3 and decreased levels of cAMP precedes the development of blood pressure and may be one of the contributing factors in the pathogenesis of hypertension.Abbreviations NECA
N-ethylcarboxamideadenosine
- Iso
Isoproterenol
- Glu
Glucagon
- ANF
atrial natriuretic factor
- AII
angiotensin II
- PT
pertussis toxin
- CT
cholera toxin
- FSK
forskolin
- GTPS
guanosine 5-[-thio]triphosphate
- Gs
stimulatory guanine nucleotide regulatory protein
- Gi
inhibitory guanine nucleotide regulatory protein
- WKY
WistarKyoto rats
- SHR
spontaneously hypertensive rats
The work presented in this report was supported by grants from Medical Research Council of Canada and Quebec Heart FoundationM.B.A-S is a recipient of the Medical Research Council Scientist Award from the Medical Reserch Council of Canada. 相似文献