首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The glyoxylate shunt enzymes, isocitrate lyase and malate synthase, were present at high levels in mycelium grown on acetate as sole source of carbon, compared with mycelium grown on sucrose medium. The glyoxylate shunt activities were also elevated in mycelium grown on glutamate or Casamino Acids as sole source of carbon, and in amino acid-requiring auxotrophic mutants grown in sucrose medium containing limiting amounts of their required amino acid. Under conditions of enhanced catabolite repression in mutants grown in sucrose medium but starved of Krebs cycle intermediates, isocitrate lyase and malate synthase levels were derepressed compared with the levels in wild type grown on sucrose medium. This derepression did not occur in related mutants in which Krebs cycle intermediates were limiting growth but catabolite repression was not enhanced. No Krebs cycle intermediate tested produced an efficient repression of isocitrate lyase activity in acetate medium. Of the two forms of isocitrate lyase in Neurospora, isocitrate lyase-1 constituted over 80% of the isocitrate lyase activity in acetate-grown wild type and also in each of the cases already outlined in which the glyoxylate shunt activities were elevated on sucrose medium. On the basis of these results, it is concluded that the synthesis of isocitrate lyase-1 and malate synthase in Neurospora is regulated by a glycolytic intermediate or derivative. Our data suggest that isocitrate lyase-1 and isocitrate lyase-2 are the products of different structural genes. The metabolic roles of the two forms of isocitrate lyase and of the glyoxylate cycle are discussed on the basis of their metabolic control and intracellular localization.  相似文献   

3.
The presence of isocitrate lyase and malate synthase was detected in cell-free extracts ofAcetobacter aceti, grown in a mineral medium with acetate as sole carbon source. The presence of these enzymes explains the ability of this strain to grow with ethanol or acetate as sole carbon source, which is an important characteristic in Frateur's classification system forAcetobacter. In addition to isocitrate lyase and malate synthase, these cell-free extracts were found to contain glyoxylate carboligase, tartronicsemialdehyde reductase and glycerate kinase. The induction of these enzymes during growth on acetate is thought to be caused by the very high activity of isocitrate lyase, which may lead to an accumulation of glyoxylate. The importance of this pathway in cells growing with acetate as sole carbon source for the synthesis of their carbohydrate components is discussed. The presence of the enzymes from the pathway from glyoxylate to 3-phosphoglycerate explains the ability of this strain to grow with ethyleneglycol and glycollate as sole carbon source.  相似文献   

4.
5.
Both key enzymes for the glyoxylate cycle, isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2), were purified and characterized from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Whereas the former enzyme was copurified with the aconitase, the latter enzyme could be enriched to apparent homogeneity. Amino acid sequencing of three internal peptides of the isocitrate lyase revealed the presence of highly conserved residues. With respect to cofactor requirement and quarternary structure the crenarchaeal malate synthase might represent a novel type of this enzyme family. High activities of both glyoxylate cycle enzymes could already be detected in extracts of glucose grown cells and both increased about two-fold in extracts of acetate grown cells.  相似文献   

6.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were present in cell-free extracts of the phototrophic, green, thermophilic bacterium Chloroflexus aurantiacus grown with acetate as the sole organic carbon source.The optimum temperature of these enzymes was 40° C, and their specific activities were high enough to account for the observed growth rate. Lower levels of the enzymes were found in extracts from cells grown on a complete medium.Itaconate was shown to inhibit isocitrate lyase from C. aurantiacus 96% at a concentration of 0.25 mM and also had a profound effect on the growth of the organism on acetate, 0.25 mM inhibiting completely. Itaconate also inhibited the growth when added to the complex medium, but in this case much higher concentrations were required.  相似文献   

7.
Bradyrhizobium japonicum, the nitrogen-fixing symbiotic partner of soybean, was grown on various carbon substrates and assayed for the presence of the glyoxylate cycle enzymes, isocitrate lyase and malate synthase. The highest levels of isocitrate lyase [165–170 nmol min–1 (mg protein)–1] were found in cells grown on acetate or β-hydroxybutyrate, intermediate activity was found after growth on pyruvate or galactose, and very little activity was found in cells grown on arabinose, malate, or glycerol. Malate synthase activity was present in arabinose- and malate-grown cultures and increased by only 50–80% when cells were grown on acetate. B. japonicum bacteroids, harvested at four different nodule ages, showed very little isocitrate lyase activity, implying that a complete glyoxylate cycle is not functional during symbiosis. The apparent K m of isocitrate lyase for d,l-isocitrate was fourfold higher than that of isocitrate dehydrogenase (61.5 and 15.5 μM, respectively) in desalted crude extracts from acetate-grown B. japonicum. When isocitrate lyase was induced, neither the V max nor the d,l-isocitrate K m of isocitrate dehydrogenase changed, implying that isocitrate dehydrogenase is not inhibited by covalent modification to facilitate operation of the glyoxylate cycle in B. japonicum. Received: 10 October 1997 / Accepted: 16 January 1998  相似文献   

8.
Glyoxylate cycle in Mucor racemosus.   总被引:1,自引:0,他引:1       下载免费PDF全文
The dimorphic phycomycete Mucor racemosus was grown in media containing acetate, glutamate, and peptone as carbon sources. The component enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, were present under these conditions throughout the growth cycles. Highest specific activities for each enzyme were found in media with acetate as the carbon source. In an enriched peptone medium containing glucose, neither activity was detected until glucose was exhausted from the medium. Treatment of acetate-grown cells with glucose resulted in a rapid decline in the specific activities of both enzymes. The importance of this cycle in acetate-grown cells was indicated by the ability of itaconic acid (100 mM) to inhibit the growth of M. racemosus in acetate but not glutamate media. Itaconate was also shown to be a potent inhibitor of isocitrate lyase activity in vitro.  相似文献   

9.
An analysis was made of the specific enzyme activities of the TCA and glyoxylate cycle in Thiobacillus versutus cells grown in a thiosulphate- or acetate-limited chemostat. Activities of all enzymes of the TCA cycle were detected, irrespective of the growth substrate and they were invariably lower in the thiosulphate-grown cells. Of the glyoxylate cycle enzymes, isocitrate lyase was absent but malate synthase activity was increased from 15 nmol·min-1·mg-1 protein in thiosulphate-grown cells to 58 nmol·min-1·mg-1 protein in acetate-grown cells. Suspensions of cells grown on thiosulphate were able to oxidize acetate, although the rate was 3 times lower than that observed with acetate-grown cells. The respiration of acetate was completely inhibited by 10 mM fluoroacetate or 5 mM arsenite. Partially purified citrate synthase from both thiosulphate- and acetate-grown cells was completely inhibited by 0.5 mM NADH and was insensitive to inhibition by 1 mM 2-oxoglutarate or 1 mM ATP. The specific enzyme activities of the TCA and glyoxylate cycle in T. versutus were compared with those of Pseudomonas fluorescens, an isocitrate lyase positive organism, after growth in a chemostat limited by acetate, glutarate, succinate or glutamate. The response of the various enzyme activities to a change in substrate was similar in both organisms, with the exception of isocitrate lyase.Abbreviations TCA tricarboxylic acid - DNTB 2,2-dinitro-5,5-dithiobenzoic acid - APAD acetylpyridine adenine dinucleotide - PMS phenazine methosulphate - DCPIP 2,6-dichlorophenol-indophenol - DOC dissolved organic carbon  相似文献   

10.
An Arthrobacter sp. (strain 9006), isolated from lake water, accumulated nitrite up to about 15 mg N/l, but no nitrate. In a mineral medium supplemented with tryptone, yeast extract, acetate and ammonium, the cells released nitrite into the medium parallel to growth or when growth had virtually ceased. The nitrite formed was proportional to the initial acetate concentration, indicating an involvement of acetate metabolism with nitrification. The organism grew with a wide variety of organic carbon sources, but washed cells formed nitrite from ammonium only in the presence of citrate, malate, acetate or ethanol. Magnesium ions were required for nitrification of ammonium and could not be replaced by other divalent metal ions. Analysis of the glyoxylate cycle key enzymes in washed suspensions incubated in a minimal medium revealed that isocitrate lyase and malate synthase were most active during the nitrification phase. Nitrite accumulation but not growth was inhibited by glucose, tryptone and yeast extract. A possible explanation for the different nitrification patterns during growth is based on the regulatory properties of glyoxylate cycle enzymes.Abbreviations IL Isocitrate lyase [threo-Ds-isocitrate glyoxylate-lase, E.C. 4.1.3.1.] - MS malate synthase [l-malate glyoxylate-lyase (CoA-acetylating), E.C. 4.1.3.2.]  相似文献   

11.
The purple photosynthetic bacterium Ectothiorhodospira mobilis, like E. shaposhnikovii, can grow in the dark in the presence of oxygen on organic media, in particular, containing acetate or malate. The source of sulfur may be sulfate or thiosulfate. The two bacteria grown in the light and in the dark display the activity of all the enzymes of the citric acid cycle, with the exception of alpha-ketoglutarate dehydrogenase, and possess the enzymes of the glyoxylate shunt (isocitrate lyase and malate synthase). Irrespective of the conditions of the cultural growth, active fixation of carbon dioxide by the cells of E. mobilis was found only in the light.  相似文献   

12.
The activities of isocitrate lyase and malate synthase—the key enzymes in the glyoxylate cycle—were found to be fairly high in n-alkane-, acetate-, and propionate-grown cells of Candida tropicalis compared with those in glucose-grown cells. In fact, the results of immunochemical studies showed that the increases in the enzyme levels resulted from increases in the amounts of the enzyme proteins. But the increases in these enzyme activities were not always coincident with the appearance of peroxisomes. Isocitrate lyase and malate synthase were purified from a peroxisome-containing particulate fraction of alkane-grown cells and from whole cells grown on glucose, acetate and propionate. The respective enzymes showed no significant differences in immunochemical properties, specific activities, molecular masses of active forms and subunits, on patterns of limited proteolysis with proteases, but the malate synthases of alkane- and propionate- grown cells showed higher Km values for acetyl-CoA than the enzymes of glucose- and acetate- grown cells. The results indicated that the synthesis of the key enzymes in the glyoxylate cycle did not necessarily have to be coincident with the development of peroxisomes in this yeast.  相似文献   

13.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

14.
Studies on acetate utilization by Rhodopseudomonas capsulata strain St. Louis indicated that the wild type grew poorly on acetate and made little if any of the glyoxylate cycle enzyme isocitrate lyase. A spontaneous mutant, Ac-l, capable of vigorous and immediate growth on acetate and exhibiting high levels of isocitrate lyase activity, was isolated in the course of those studies.Isocitrate lyase was not formed when the mutant was grown on malate. Addition of malate to cultures of Ac-l growing on acetate resulted in loss of the enzyme by dilution through growth.Starvation of acetate-grown Ac-l for acetate resulted in a rapid and complete loss of isocitrate lyase activity which was shown to be energy dependent. Readdition of acetate to a starved culture previously grown on acetate resulted in a rapid recovery of enzyme activity. The recovery required energy and was sensitive to chloramphenicol inhibition at any time during the recovery phase.  相似文献   

15.
SYNOPSIS. Seven strains of Tetrahymena pyriformis were assayed for log phase activity of the glyoxylate bypass enzymes isocitrate lyase and malate synthase. In strains 6I, 6II, 6III, and W, isocitrate lyase was induced; in HS, neither enzyme was induced by acetate. During growth in glucose- or acetate-containing media, strains 6III and GL had 2 periods of increased glyoxylate bypass and isocitrate dehydrogenase enzyme activities. Enzyme activities reached a maximum at the end of log phase, declined until the middle of stationary phase, and then increased again to a maximum near the end of stationary phase.  相似文献   

16.
17.
The presence and some properties of the key enzymes of the glyoxylate cycle, isocitrate lyase (threo-Ds-isocitrate glyoxylate-lyase, EC 4.1.3.1) and malate synthase (L-malate glyoxylate-lyase (CoA-acetylating) EC 4.1.3.2), were investigated in Leptospira biflexa. Isocitrate lyase activity was found for the first time in the organism. The enzyme was induced by ethanol but not by acetate. The optimum pH was 6.8. The activity was inhibited by phosphoenolpyruvate, a specific inhibitor of isocitrate lyase. The optimum pH of malate synthase of L. biflexa was about 8.5. The Km value for glyoxylate was 3.0 × 10?3 M and the activity was inhibited by glycolate, the inhibitor. The results strongly suggested the presence of a glyoxylate cycle in Leptospira. The possibility that the glyoxylate cycle plays an essential role in the synthesis of sugars, amino acids and other cellular components as an anaplerotic pathway of the tricarboxylic acid cycle in Leptospira was discussed.  相似文献   

18.
The levels of Krebs cycle, glyoxylate cycle, and certain other enzymes were measured in a wild-type strain and in seven groups of acetate-nonutilizing (acu) mutants of Neurospora crassa, both after growth on a medium containing sucrose and after a subsequent 6-hr incubation in a similar medium, containing acetate as the sole source of carbon. In the wild strain, incubation in acetate medium caused a rise in the levels of isocitrate lyase, malate synthase, phosphoenolpyruvate carboxykinase, acetyl-coenzyme A synthetase, nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, citrate synthase, and fumarate hydratase. Isocitrate lyase activity was absent in acu-3 mutants; acu-5 mutants lacked acetyl-coenzyme A synthetase activity; and no oxoglutarate dehydrogenase activity (or only low levels) could be detected in acu-2 and acu-7 mutants. In acu-6 mutants, phosphoenolpyruvate carboxykinase activity was either very low or absent. No specific biochemical deficiencies could be attributed to the acu-1 and acu-4 mutations. The role of several of these enzymes during growth on acetate is discussed.  相似文献   

19.
The metabolic fate of acetate, produced during taurine catabolism in Pseudomonas aeruginosa TAU-5, appear to involve the glyoxylate cycle. Organisms grown on taurine have significantly higher levels of malate synthetase and isocitrate lyase than cells grown on nutrient broth, but were comparable to the levels found in acetate-grown organisms. Itaconate, an isocitrate lyase inhibitor, produced a prolonged lag phase and reduced the growth rate of organisms when it was present in the taurine or acetate growth medium. Ethylmethanesulfonate treatment of TAU-5 yielded mutant strains unable to grow on taurine or acetate as sole carbon sources, due to a lack of either malate synthetase or isocitrate lyase. Spontaneous revertants derived from these mutant strains regained the missing enzyme activity and the ability to grow on taurine or acetate.  相似文献   

20.
Control of Malate Synthase Formation in Rhizopus nigricans   总被引:2,自引:1,他引:1       下载免费PDF全文
The control of malate synthase formation in a fumaric acid-producing strain of Rhizopus nigricans has been found to be similar in most respects to that of isocitrate lyase, the companion enzyme of the glyoxylate bypass. A basal level is formed in a casein hydrolysate medium, which is repressed by glucose. Utilization of glucose during growth results in relief of glucose repression. Any factor which stimulates growth promotes relief of glucose repression by enhancing the incorporation of repressor metabolites derived from glucose into cell material. Thus, malate synthase formation was enhanced in glucose-containing media by the addition of zinc, or by an increase of the concentration of available nitrogen source in a synthetic medium. Both acetate and glycolate acted as apparent inducers of malate synthase, with glycolate the more effective of the two when added alone. Acetate induction was enhanced by Zn++, however, whereas induction by glycolate was unaffected. This supports the concept that acetate stimulates formation of glyoxylate bypass enzymes by a derepression mechanism, whereas glycolate or a product derived from it acts directly as an inducer. Moreover, it is indicated that the malate synthases induced by acetate and glycolate are separate and distinct, as has been shown in Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号