首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrids resulting from crosses between Baccharis sarothroides and B. pilularis (FS1), B. sarothroides (FS2) and B. megapotamica (FS3) were tested for their tolerance to trichothecenes as well as their ability to metabolize the toxins. B. sarothroides (desert broom) was placed in an aqueous solution containing 500 ppm of T-2 toxin and showed visible signs of toxicity on the twigs at 21 h after exposure but not at 6 h, indicating some resistance. Samples of the twigs harvested 6 and 21 h after treatment contained, respectively, T-2 (0.03 and 2.2 micrograms/g), HT-2 (0.09 and 7.6 micrograms/g), and T-2-tetraol (2.1 and 2.6 micrograms/g). The hybrid FS1 showed no signs of toxicity 6 h after treatment, and its twigs contained T-2 (0.8 micrograms/g), HT-2 (10.2 micrograms/g), and T-2-tetraol (10.8 micrograms/g). The leaves at 6 h contained 0.5 micrograms of T-2, 1.7 micrograms of HT-2, 0.01 microgram of 3'-hydroxy-HT-2, and 41 micrograms of T-2-tetraol per g. At 21 h, toxic signs were apparent and the twigs contained T-2 (39 micrograms/g), HT-2 (62 micrograms/g), 3'-hydroxy-HT-2 (0.8 microgram/g), and T-2-tetraol (22 micrograms/g).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A new, improved approach for the production of antibodies against T-2 toxin and diacetoxyscirpenol (DAS) was developed. The method involves the use of immunogens which were prepared by conjugating O-carboxymethoxyl oxime (CMO) derivatives of both toxins to bovine serum albumin (BSA). Isomers a and b of CMO-T-2 toxin and isomer b of CMO-DAS were tested. Antibodies against both toxins were demonstrated as early as 4 weeks after immunization. a-CMO-T-2-BSA conjugate was a better immunogen than the b isomer, and the highest titers (6,000) were reached 14 weeks after immunization and one booster injection. Antibody titers for rabbits immunized with the b isomer of CMO-T-2 never reached more than 2,000. The specificity of antibodies obtained from rabbits after immunization with CMO-T-2-BSA was similar to that of hemisuccinate-T-2-BSA. Anti-b-T-2 antibodies had slightly higher cross-reactivity with H-T-2 toxin than did the antibody obtained from rabbits immunized with the conjugate of the a isomer. The relative cross-reactivities of anti-a-CMO-T-2 antibody with T-2, acetyl-T-2, H-T-2, T-2-triol, 3'-OH-T-2, and T-2 tetraol were 1, 4.5, 5.7, 250, 500, and 3,000, respectively. The relative cross-reactivities of anti-b-T-2 antibody with T-2, acetyl-T-2, H-T-2, and T-2 triol were 1, 2, 3, and 488, respectively. Antibodies against b-CMO-DAS showed a high degree of cross-reactivity with monoacetoxyscirpenols (MAS). The relative cross-reactivities of anti-B-DAS antibody with DAS, 4-MAS, 15-MAS, acetyl-deoxynivalenol, T-2-toxin, acetyl-T-2, and neosolaniol were 1, 4, 5, 76, 107, 147, and 266, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
A new, improved approach for the production of antibodies against T-2 toxin and diacetoxyscirpenol (DAS) was developed. The method involves the use of immunogens which were prepared by conjugating O-carboxymethoxyl oxime (CMO) derivatives of both toxins to bovine serum albumin (BSA). Isomers a and b of CMO-T-2 toxin and isomer b of CMO-DAS were tested. Antibodies against both toxins were demonstrated as early as 4 weeks after immunization. a-CMO-T-2-BSA conjugate was a better immunogen than the b isomer, and the highest titers (6,000) were reached 14 weeks after immunization and one booster injection. Antibody titers for rabbits immunized with the b isomer of CMO-T-2 never reached more than 2,000. The specificity of antibodies obtained from rabbits after immunization with CMO-T-2-BSA was similar to that of hemisuccinate-T-2-BSA. Anti-b-T-2 antibodies had slightly higher cross-reactivity with H-T-2 toxin than did the antibody obtained from rabbits immunized with the conjugate of the a isomer. The relative cross-reactivities of anti-a-CMO-T-2 antibody with T-2, acetyl-T-2, H-T-2, T-2-triol, 3'-OH-T-2, and T-2 tetraol were 1, 4.5, 5.7, 250, 500, and 3,000, respectively. The relative cross-reactivities of anti-b-T-2 antibody with T-2, acetyl-T-2, H-T-2, and T-2 triol were 1, 2, 3, and 488, respectively. Antibodies against b-CMO-DAS showed a high degree of cross-reactivity with monoacetoxyscirpenols (MAS). The relative cross-reactivities of anti-B-DAS antibody with DAS, 4-MAS, 15-MAS, acetyl-deoxynivalenol, T-2-toxin, acetyl-T-2, and neosolaniol were 1, 4, 5, 76, 107, 147, and 266, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In vitro metabolism of T-2 toxin in rats.   总被引:1,自引:5,他引:1       下载免费PDF全文
T-2 toxin was rapidly converted in the 9,000 X g supernatant fraction of rat liver homogenate into HT-2 toxin, T-2 tetraol, and two unknown metabolites designated as TMR-1 and TMR-2. TMR-1 was characterized as 4-deacetylneosolaniol (15-acetoxy-3 alpha, 4 beta, 8 alpha-trihydroxy-12,13-epoxytrichothec-9-ene) by spectroscopic analyses. Since the same metabolites were also obtained from HT-2 toxin used as substrate, it was concluded that T-2 toxin was hydrolyzed preferentially at the C-4 position to give HT-2 toxin, which was then metabolized to T-2 tetraol via 4-deacetylneosolaniol. In addition to HT-2 toxin, 4-deacetylneosolaniol and T-2 tetraol, a trace amount of neosolaniol was transformed from T-2 toxin by rat intestinal strips. In vitro metabolic pathways for T-2 toxin in rats are proposed.  相似文献   

6.
A shuttle vector that can replicate in both Streptococcus spp. and Escherichia coli has been constructed by joining the E. coli plasmid pACYC184 (chloramphenicol and tetracycline resistance) to the streptococcal plasmid pGB305 (erythromycin resistance). The resulting chimeric plasmid is designated pSA3 (chloramphenicol, erythromycin, and tetracycline resistance) and has seven unique restriction sites: EcoRI, EcoRV, BamHI, SalI, XbaI, NruI, and SphI. Molecular cloning into the EcoRI or EcoRV site results in inactivation of chloramphenicol resistance, and cloning into the BamHI, SalI, or SphI site results in inactivation of tetracycline resistance in E. coli. pSA3 was transformed and was stable in Streptococcus sanguis and Streptococcus mutans in the presence of erythromycin. We have used pSA3 to construct a library of the S. mutans GS5 genome in E. coli, and expression of surface antigens in this heterologous host has been confirmed with S. mutans antiserum. A previously cloned determinant that specifies streptokinase was subcloned into pSA3, and this recombinant plasmid was stable in the presence of a selective pressure and expressed streptokinase activity in E. coli, S. sanguis (Challis), and S. mutans.  相似文献   

7.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

8.
In vitro metabolism of T-2 toxin with S-9 fraction obtained from livers of phenobarbital-treated pigs and rats in the presence of different esterase inhibitors, including NaF, p-hydroxymercuribenzoate, phenylmethylsulfonyl fluoride, eserine sulfate, diisopropylfluorophosphate, and diethyl p-nitrophenyl phosphate, was studied. The metabolism was completely shifted to the hydroxylation at the C-3' position in the T-2 toxin molecule when esterase inhibitors were present. Diethyl p-nitrophenyl phosphate was found to be the most potent among six esterase inhibitors tested. In the presence of 10(-4) M diethyl p-nitrophenyl phosphate, 3'-hydroxy-T-2 toxin was the only metabolite detected. Similar results were obtained when other T-2-related metabolites were tested. The yield of conversion of T-2 toxin, acetyl T-2 toxin, HT-2 toxin and T-2 triol to their respective 3'-hydroxyl derivatives were 82, 73, 72, and 75%, respectively.  相似文献   

9.
T-2 toxin metabolism by ruminal bacteria and its effect on their growth   总被引:3,自引:0,他引:3  
The effect of T-2 toxin on the growth rates of different bacteria was used as a measure of its toxicity. Toxin levels of 10 micrograms/ml did not decrease the growth rate of Selenomonas ruminantium and Anaerovibrio lipolytica, whereas the growth rate of Butyrivibrio fibrisolvens was uninhibited at toxin levels as high as 1 mg/ml. There was, however, a noticeable increase in the growth rate of B. fibrisolvens CE46 and CE51 and S. ruminantium in the presence of low concentrations (10 micrograms/ml) of T-2 toxin, which may indicate the assimilation of the toxin as an energy source by these bacteria. Three tributyrin-hydrolyzing bacterial isolates did not grow at all in the presence of T-2 toxin (10 micrograms/ml). The growth rate of a fourth tributyrin-hydrolyzing bacterial isolate was unaffected. B. fibrisolvens CE51 degraded T-2 toxin to HT-2 toxin (22%), T-2 triol (3%), and neosolaniol (10%), whereas A. lipolytica and S. ruminantium degraded the toxin to HT-2 toxin (22 and 18%, respectively) and T-2 triol (7 and 10%, respectively) only. These results have been explained in terms of the presence of two different toxin-hydrolyzing enzyme systems. Studies with B. fibrisolvens showed the presence of a T-2 toxin-degrading enzyme fraction in a bacterial membrane preparation. This fraction had an approximate molecular weight of 65,000 and showed esterase activity (395.6 mumol of p-nitrophenol formed per min per mg of protein with p-nitrophenylacetate as the substrate.  相似文献   

10.
The biodegradation of T-2 toxin was studied by strains of micromycetes which were isolated from the environment. The 26 tested strains were divided into three groups. Group contains strains which degraded T-2 toxin very fast. This toxin could not be chromatographically determined in the medium even after 48 hours of incubation and the antifungal activity of residua against Kluyveromyces fragilis CCY-51-1-2 was low or zero. There were strains of Alternaria sp., Ulocladium sp., Aspergillus candidus, Cladosporium cladosporioides, Rhodotorula sp., Aspergillus flavus and Cladosporium macrocarpum. Group II contains with a low activity and in group III the results were variable and non stable.  相似文献   

11.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

12.
T-2 toxin in serum, urine, and saline was analyzed by a modified radioimmunoassay procedure. The specimens were added directly to the assay tubes without extraction steps. The reaction between antibody and ligands was optimal at 1 h. Albumin-coated charcoal was used to separate bound from free radioactivity. Quenching, which occurred with hemolyzed specimens, was corrected by a wet oxidation process with 60% perchloric acid and 30% hydrogen peroxide. The shorter incubation times resulted in an assay that takes less than 6 h to complete. The average affinity constant of the antibody (Km) was 1.75 X 10(10) liters/mol. The sensitivity was 1 ng per assay or 10 ng/ml. Among the other trichothecenes tested, only H-T-2 cross-reacted significantly (10.3%).  相似文献   

13.
Biosynthesis of radiolabeled T-2 toxin by Fusarium tricinctum.   总被引:1,自引:5,他引:1       下载免费PDF全文
Incubation of Fusarium tricinctum NRRL 3299 on a solid rice medium in the presence of [1-14C]sodium acetate, [2-3H]mevalonic acid, [2-14C]mevalonic acid, or [5-3H]mevalonic acid yielded preparations of radiolabeled T-2 toxin with specific activities of 1.008, 1.64, 0.656, and 7.35 muCi/mmol, respectively.  相似文献   

14.
T-2 toxin, a toxic member of the group A trichothecenes, is produced by various Fusarium species that can potentially affect human health. As the intestine plays an important role in the metabolism of T-2 toxin for animals and humans, the degradation and metabolism of T-2 toxin was studied using the pig cecum in vitro model system developed in the author??s group. In order to study the intestinal degradation of T-2 toxin by pig microbiota, incubation was performed with the cecal chyme from four different pigs in repeat determinations. A large variation in the intestinal degradation of T-2 toxin was observed for individual pigs. T-2 toxin was degraded almost completely in one out of four pigs, in which only 3.0?±?0.1?% of T-2 toxin was left after 24?h incubation. However, in the other three incubations with pig cecal suspension, 54.1?±?11.7?C68.9?±?16.1?% of T-2 toxin were still detectable after 24?h incubation time. The amount of HT-2 toxin was increased along with the incubation time, and HT-2 toxin accounted for 85.2?±?0.7?% after 24?h in the most active cecum. HT-2 toxin was the only detectable metabolite formed by the intestinal bacteria. This study suggests that the toxicity of T-2 toxin for pigs is caused by the combination of T-2 and HT-2 toxins.  相似文献   

15.
Characterisation of hemolysis induced by T-2 toxin   总被引:1,自引:0,他引:1  
The erythrocyte constitutes a good model system for the study of membrane-associated toxicity events caused by the trichothecene mycotoxin, T-2. This study confirms that T-2 has a direct lytic effect on erythrocytes. Lysis of guinea pig red cells requires approx. 10(10) molecules/cell and reaches plateau values after 4-6 h. An activation energy, Ea approximately equal to 4.5 kcal was derived from the Arrhenius equation. By use of osmotic blockers of differing Stokes' radii, the functional size of the membrane lesion caused by T-2 toxin was shown to be smaller than 5.5 A. It is concluded that T-2 toxin may exert its toxic effects via the cell membrane.  相似文献   

16.
New process for T-2 toxin production.   总被引:1,自引:7,他引:1       下载免费PDF全文
Strains of Fusarium produced high levels of T-2 toxin when cultured on certain media absorbed into vermiculite. Modified Gregory medium was nutritionally complex (2% soya meal, 0.5% corn steep liquor, 10% glucose) and, when inoculated with the appropriate fungal strain, yielded maximum T-2 toxin within 24 days of incubation at 19 degrees C. On Vogel synthetic medium N (H. J. Vogel, Microb. Genet, Bull. 13:42-43, 1956) supplemented with 5% glucose, optimal toxin levels were synthesized after incubation for 12 to 14 days at 15 degrees C. Fusarium tricinctum T-340 produced 714 and 353 mg/liter on modified Gregory medium and Vogel synthetic medium N plus 5% glucose, respectively. Improved analytical procedures were developed and involved aqueous methanol extraction, purification by liquid-liquid partitions, and gas-chromatographic quantitation.  相似文献   

17.
Production of antibody against T-2 toxin.   总被引:10,自引:18,他引:10       下载免费PDF全文
Antibody against T-2 toxin was obtained after immunization of rabbits with bovine serum albumin-T-2 hemisuccinate conjugate. The antibody had greatest binding efficiency for T-2 toxin, less efficiency for HT-2, and least for T-2 triol. Cross-reaction of antibody with neosolaniol, T-2 tetraol, and 8-acetyl-neosolaniol was very weak. Diacetoxyscirpenol, trichodermin, vomitoxin, and verrucarin A essentially gave no cross-reaction with the antibody. The sensitivity of the binding assay for T-2 toxin detection was in the range of 1 to 20 ng per assay. Detailed methods for the preparation of the conjugate and the production of immune serum and methods for antibody determination are described.  相似文献   

18.
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.  相似文献   

19.
Oats grain from South Africa was frequently found to be infested by toxic strains of Fusarium acuminatum, as was one barley sample. All 11 toxic strains tested produced T-2 toxin (0.8 to 2,600 mg/kg), and 6 of 11 strains produced diacetoxyscirpenol (0.6 to 8.4 mg/kg). This is the first record of T-2 toxin-producing Fusarium isolates from Africa and of the production of large amounts of T-2 toxin at relatively high (25 degrees C) temperatures.  相似文献   

20.
Fusarium spp. isolated from plant materials grown in the hot, humid climate of North Carolina were tested for production of mycotoxins. Isolates of F. acuminatum, F. graminearum, F. moniliforme, F. oxysporum, and F. solani produced zearalenone while isolates of F. equiseti and F. graminearum produced T-2 toxin and deoxynivalenol, respectively. This is the first report of zearalenone production by F. solani. The toxins were identified by capillary gas chromatography-mass spectrometry. These findings suggest that there are toxigenic strains of Fusarium indigenous to the warmer regions of the USA and that fasariotoxicoses of animals in this region are not necessarily the result of importing toxic grains from the cooler, upper midwestern USA.Paper No. 8953 of the Journal Series of North Carolina Agricultural Research Service, Raleigh, North Carolina. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the product named nor criticism of similar ones not mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号