首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown.

Methods and Results

Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif.

Conclusions and Significance

These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury.  相似文献   

2.
The enzyme xanthine oxidoreductase (XOR) catalyses the last step of purine degradation in the highest uricotelic primates as a rate-limiting enzyme in nucleic acid catabolism. Although XOR has been studied for more than a century, this enzyme continues to arouse interest because its involvement in many pathological conditions is not completely known. XOR is highly evolutionarily conserved; moreover, its activity is very versatile and tuneable at multiple-levels and generates both oxidant and anti-oxidant products. This review covers the basic information on XOR biology that is essential to understand its enzymatic role in human pathophysiology and provides a comprehensive catalogue of the experimental and human pathologies associated with increased serum XOR levels. The production of radical species by XOR oxidase activity has been intensively studied and evaluated in recent decades in conjunction with the cytotoxic consequences and tissue injuries of various pathological conditions. More recently, a role has emerged for the activity of endothelium-bound enzymes in inducing the vascular response to oxidative stress, which includes the regulation of pro-inflammatory and pro-thrombotic activities of endothelial cells. The possible physiological functions of circulating XOR and the products of its enzyme activity are presented here together with their implications in cardiovascular and metabolic diseases.  相似文献   

3.
Xanthine oxidoreductase (XOR) is a widely distributed enzyme, involved in the metabolism of purines, which generates superoxide and is thought to be involved in free radical-generated tissue injury. It is present at high concentrations in the liver, from where it may be released during liver injury into the circulation, binding to vascular endothelium and causing vascular dysfunction. The cellular localization of the enzyme, essential to understanding its function, is, however, still debated. The present study has used a highly specific mouse monoclonal antibody to define the cellular distribution of XOR in normal and cirrhotic human liver. As shown previously, XOR is present in hepatocytes. However, the novel finding of this study is that XOR is present in bile duct epithelial cells, where it is concentrated toward the luminal surface. Moreover, in liver disease, proliferating bile ducts are also strongly positive for XOR. These findings suggest that the enzyme is secreted into bile, and this was confirmed by analysis of human and rat bile. Xanthine oxidase activity was 10 to 20-fold higher in liver tissue obtained from patients with liver disease, than in healthy liver. We conclude that XOR is expressed primarily in hepatocytes, but is also present in bile duct epithelial cells and is secreted into bile. Its role in bile is unknown but it may be involved in innate immunity of the bowel muscosa.  相似文献   

4.
Oxidative stress defines an imbalance in production of oxidizing chemical species and their effective removal by protective antioxidants and scavenger enzymes. Evidence of massive oxidative stress is well established in adult critical illnesses characterized by tissue ischemia-reperfusion injury and by an intense systemic inflammatory response such as during sepsis and acute respiratory distress syndrome. Oxidative stress could exacerbate organ injury and thus overall clinical outcome. We searched MEDLINE databases (January 1966 to June 2005). For interventional studies, we accepted only randomized trials. Several small clinical trials have been performed in order to reduce oxidative stress by supplementation of antioxidants alone or in combination with standard therapies. These studies have reported controversial results. Newer large multicenter trials with antioxidant supplementation should be performed, considering administration at an early stage of illness and a wider population of critically ill patients.  相似文献   

5.
Xanthine oxidase (EC 1.1.3.22) and xanthine dehydrogenase (EC 1.1.1. 204) are both members of the molybdenum hydroxylase flavoprotein family and represent different forms of the same gene product. The two enzyme forms and their reactions are often referred to as xanthine oxidoreductase (XOR) activity. Physiologically, XOR is known as the rate-limiting enzyme in purine catabolism but has also been shown to be able to metabolize a number of other physiological compounds. Recent studies have also demonstrated its ability to metabolize xenobiotics, including a number of anticancer compounds, to their active metabolites. During the past 10 years, evidence has mounted to support a role for XOR in the pathophysiology of inflammatory diseases and atherosclerosis as well as its previously determined role in ischemia-reperfusion injury. While significant progress has recently been made in our understanding of the physiological and biochemical nature of this enzyme system, considerable work still needs to be done. This paper will review some of the more recent work characterizing the interactions and the factors that influence the interactions of XOR with various physiological and xenobiotic compounds.  相似文献   

6.
Alpha-ketoglutarate dehydrogenase (alpha-KGDH) is a highly regulated enzyme, which could determine the metabolic flux through the Krebs cycle. It catalyses the conversion of alpha-ketoglutarate to succinyl-CoA and produces NADH directly providing electrons for the respiratory chain. alpha-KGDH is sensitive to reactive oxygen species (ROS) and inhibition of this enzyme could be critical in the metabolic deficiency induced by oxidative stress. Aconitase in the Krebs cycle is more vulnerable than alpha-KGDH to ROS but as long as alpha-KGDH is functional NADH generation in the Krebs cycle is maintained. NADH supply to the respiratory chain is limited only when alpha-KGDH is also inhibited by ROS. In addition being a key target, alpha-KGDH is able to generate ROS during its catalytic function, which is regulated by the NADH/NAD+ ratio. The pathological relevance of these two features of alpha-KGDH is discussed in this review, particularly in relation to neurodegeneration, as an impaired function of this enzyme has been found to be characteristic for several neurodegenerative diseases.  相似文献   

7.
Structure and function of xanthine oxidoreductase: where are we now?   总被引:23,自引:0,他引:23  
Xanthine oxidoreductase (XOR) is a complex molybdoflavoenzyme, present in milk and many other tissues, which has been studied for over 100 years. While it is generally recognized as a key enzyme in purine catabolism, its structural complexity and specialized tissue distribution suggest other functions that have never been fully identified. The publication, just over 20 years ago, of a hypothesis implicating XOR in ischemia-reperfusion injury focused research attention on the enzyme and its ability to generate reactive oxygen species (ROS). Since that time a great deal more information has been obtained concerning the tissue distribution, structure, and enzymology of XOR, particularly the human enzyme. XOR is subject to both pre- and post-translational control by a range of mechanisms in response to hormones, cytokines, and oxygen tension. Of special interest has been the finding that XOR can catalyze the reduction of nitrates and nitrites to nitric oxide (NO), acting as a source of both NO and peroxynitrite. The concept of a widely distributed and highly regulated enzyme capable of generating both ROS and NO is intriguing in both physiological and pathological contexts. The details of these recent findings, their pathophysiological implications, and the requirements for future research are addressed in this review.  相似文献   

8.
Cisplatin is a commonly used chemotherapeutic drug, the clinical use of which is limited by the development of dose-dependent nephrotoxicity. Enhanced inflammatory response, oxidative stress, and cell death have been implicated in the development of cisplatin-induced nephropathy; however, the precise mechanisms are elusive. Overactivation of the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) by oxidative DNA damage under various pathological conditions promotes cell death and up-regulation of key proinflammatory pathways. In this study, using a well-established model of nephropathy, we have explored the role of PARP-1 in cisplatin-induced kidney injury. Genetic deletion or pharmacological inhibition of PARP-1 markedly attenuated the cisplatin-induced histopathological damage, impaired renal function (elevated serum BUN and creatinine levels), and enhanced inflammatory response (leukocyte infiltration; TNF-α, IL-1β, F4/80, adhesion molecules ICAM-1/VCAM-1 expression) and consequent oxidative/nitrative stress (4-HNE, 8-OHdG, and nitrotyrosine content; NOX2/NOX4 expression). PARP inhibition also facilitated the cisplatin-induced death of cancer cells. Thus, PARP activation plays an important role in cisplatin-induced kidney injury, and its pharmacological inhibition may represent a promising approach to preventing the cisplatin-induced nephropathy. This is particularly exciting because several PARP inhibitors alone or in combination with DNA-damaging anticancer agents show considerable promise in clinical trials for treatment of various malignancies (e.g., triple-negative breast cancer).  相似文献   

9.
Acute inhalation of combustion smoke causes neurological deficits in survivors. Inhaled smoke includes carbon monoxide, noxious gases, and a hypoxic environment, which disrupt oxygenation and generate free radicals. To replicate a smoke-inhalation scenario, we developed an experimental model of acute exposure to smoke for the awake mouse/rat and detected induction of biomarkers of oxidative stress. These include inhibition of mitochondrial respiratory complexes and formation of oxidative DNA damage in the brain. DNA damage is likely to contribute to neuronal dysfunction and progression of brain injury. In the search for strategies to attenuate the smoke-initiated brain injury, we produced a transgenic mouse overexpressing the neuronal globin protein neuroglobin. Neuroglobin was neuroprotective in diverse models of ischemic/hypoxic/toxic brain injuries. Here, we report lesser inhibition of respiratory complex I and reduced formation of smoke-induced DNA damage in neuroglobin transgenic compared to wild-type mouse brain. DNA damage was assessed using the standard comet assay, as well as a modified comet assay done in conjunction with an enzyme that excises oxidized guanines that form readily under conditions of oxidative stress. Both comet assays revealed that overexpressed neuroglobin attenuates the formation of oxidative DNA damage, in vivo, in the brain. These findings suggest that elevated neuroglobin exerts neuroprotection, in part, by decreasing the impact of acute smoke inhalation on the integrity of neuronal DNA.  相似文献   

10.
It has long been established that oxidative stress plays a critical role in the pathophysiology of spinal cord injury, and represents an important target of therapeutic intervention following the initial trauma. However, free radical scavengers have been largely ineffective in clinical trials, and as such a novel target to attenuate oxidative stress is highly warranted. In addition to free radicals, peroxidation of lipid membranes following spinal cord injury (SCI) produces reactive aldehydes such as acrolein. Acrolein is capable of depleting endogenous antioxidants such as glutathione, generating free radicals, promoting oxidative stress, and damaging proteins and DNA. Acrolein has a significantly longer half‐life than the transient free radicals, and thus may represent a potentially better target of therapeutic intervention to attenuate oxidative stress. There is growing evidence, from our lab and others, to suggest that reactive aldehydes such as acrolein play a critical role in oxidative stress and SCI. The focus of this review is to summarize the cellular and biochemical mechanisms of acrolein‐induced membrane damage, mitochondrial injury, oxidative stress, cell death, and functional loss. Evidence will also be presented to suggest that acrolein scavenging may be a novel means of therapeutic intervention to attenuate oxidative stress and improve recovery following traumatic SCI.  相似文献   

11.
12.
Xanthine oxidoreductase (XOR) is a ubiquitous complex cytosolic molybdoflavoprotein which controls the rate limiting step of purine catabolism by converting xanthine to uric acid. It is known that optimum concentrations of uric acid (UA) and reactive oxygen species (ROS) are necessary for normal functioning of the body. The ability of XOR to perform detoxification reactions, and to synthesize UA and reactive oxygen species (ROS) makes it a versatile intra- and extra-cellular protective "housekeeping enzyme". It is also an important component of the innate immune system. The enzyme is a target of drugs against gout and hyperuricemia and the protein is of major interest as it is associated with ischemia reperfusion (I/R) injury, vascular disorders in diabetes, cardiovascular disorders, adipogenesis, metabolic syndrome, cancer, and many other disease conditions. Xanthine oxidoreductase in conjugation with antibodies has been shown to have an anti-tumor effect due to its ability to produce ROS, which in turn reduces the growth of cancer tissues. Apart from this, XOR in association with nitric oxide synthase also participates in myocardial excitation-contraction coupling. Although XOR was discovered over 100 years ago, its physiological and pathophysiological roles are still not clearly elucidated. In this review, various physiological and pathophysiological functional aspects of XOR and its association with various forms of cancer are discussed in detail.  相似文献   

13.
Xanthine oxidoreductase (XOR) is a 300-kDa homodimer that can exist as an NAD+-dependent dehydrogenase (XD) or as an O2-dependent oxidase (XO) depending on the oxidation state of its cysteine thiols. Both XD and XO undergo limited cleavage by chymotrypsin and trypsin. Trypsin selectively cleaved both enzyme forms at Lys184, while chymotrypsin cleaved XD primarily at Met181 but cleaved XO at Met181 and at Phe560. Chymotrypsin, but not trypsin, cleavage also prevented the reductive conversion of XO to XD; thus the region surrounding Phe560 appears to be important in the interconversion of the two forms. Size exclusion chromatography showed that disulfide bond formation reduced the hydrodynamic volume of the enzyme, and two-dimensional gel electrophoresis of chymotrypsin-digested XO showed significant, disulfide bond-mediated, conformational heterogeneity in the N-terminal third of the enzyme but no evidence of disulfide bonds between the N-terminal and C-terminal regions or between XOR subunits. These results indicate that intrasubunit disulfide bond formation leads to a global conformational change in XOR that results in the exposure of the region surrounding Phe560. Conformational changes within this region in turn appear to play a critical role in the interconversion between the XD and XO forms of the enzyme.  相似文献   

14.
Xanthine oxidoreductase (XOR) is a ubiquitous complex cytosolic molybdoflavoprotein which controls the rate limiting step of purine catabolism by converting xanthine to uric acid. It is known that optimum concentrations of uric acid (UA) and reactive oxygen species (ROS) are necessary for normal functioning of the body. The ability of XOR to perform detoxification reactions, and to synthesize UA and reactive oxygen species (ROS) makes it a versatile intra- and extra-cellular protective “housekeeping enzyme”. It is also an important component of the innate immune system. The enzyme is a target of drugs against gout and hyperuricemia and the protein is of major interest as it is associated with ischemia reperfusion (I/R) injury, vascular disorders in diabetes, cardiovascular disorders, adipogenesis, metabolic syndrome, cancer, and many other disease conditions. Xanthine oxidoreductase in conjugation with antibodies has been shown to have an anti-tumor effect due to its ability to produce ROS, which in turn reduces the growth of cancer tissues. Apart from this, XOR in association with nitric oxide synthase also participates in myocardial excitation-contraction coupling. Although XOR was discovered over 100 years ago, its physiological and pathophysiological roles are still not clearly elucidated. In this review, various physiological and pathophysiological functional aspects of XOR and its association with various forms of cancer are discussed in detail.  相似文献   

15.
α-Ketoglutarate dehydrogenase (KGDH), a key regulatory enzyme within the Krebs cycle, is sensitive to mitochondrial redox status. Treatment of mitochondria with H?O? results in reversible inhibition of KGDH due to glutathionylation of the cofactor, lipoic acid. Upon consumption of H?O?, glutathione is removed by glutaredoxin restoring KGDH activity. Glutathionylation appears to be enzymatically catalysed or require a unique microenvironment. This may represent an antioxidant response, diminishing the flow of electrons to the respiratory chain and protecting sulphydryl residues from oxidative damage. KGDH is, however, also susceptible to oxidative damage. 4-Hydroxy-2-nonenal (HNE), a lipid peroxidation product, reacts with lipoic acid resulting in enzyme inactivation. Evidence indicates that HNE modified lipoic acid is cleaved from KGDH, potentially the first step of a repair process. KGDH is therefore a likely redox sensor, reversibly altering metabolism to reduce oxidative damage and, under severe oxidative stress, acting as a sentinel of mitochondrial viability.  相似文献   

16.
Mitochondria are both targets and sources of oxidative stress. This dual relationship is particularly evident in experimental paradigms modeling ischemic brain injury. One mitochondrial metabolic enzyme that is particularly sensitive to oxidative inactivation is pyruvate dehydrogenase. This reaction is extremely important in the adult CNS that relies very heavily on carbohydrate metabolism, as it represents the sole bridge between anaerobic and aerobic metabolism. Oxidative injury to this enzyme and to other metabolic enzymes proximal to the electron transport chain may be responsible for the oxidized shift in cellular redox state that is observed during approximately the first hour of cerebral reperfusion. In addition to impairing cerebral energy metabolism, oxidative stress is a potent activator of apoptosis. The mechanisms responsible for this activation are poorly understood but likely involve the expression of p53 and possibly direct effects of reactive oxygen species on mitochondrial membrane proteins and lipids. Mitochondria also normally generate reactive oxygen species and contribute significantly to the elevated net production of these destructive agents during reperfusion. Approaches to inhibiting pathologic mitochondrial generation of reactive oxygen species include mild uncoupling, pharmacologic inhibition of the membrane permeability transition, and simply lowering the concentration of inspired oxygen. Antideath mitochondrial proteins of the Bcl-2 family also confer cellular resistance to oxidative stress, paradoxically through stimulation of mitochondrial free radical generation and secondary upregulation of antioxidant gene expression.  相似文献   

17.
Yen CC  Lai YW  Chen HL  Lai CW  Lin CY  Chen W  Kuan YP  Hsu WH  Chen CM 《PloS one》2011,6(10):e26870
An important issue in critical care medicine is the identification of ways to protect the lungs from oxygen toxicity and reduce systemic oxidative stress in conditions requiring mechanical ventilation and high levels of oxygen. One way to prevent oxygen toxicity is to augment antioxidant enzyme activity in the respiratory system. The current study investigated the ability of aerosolized extracellular superoxide dismutase (EC-SOD) to protect the lungs from hyperoxic injury. Recombinant human EC-SOD (rhEC-SOD) was produced from a synthetic cassette constructed in the methylotrophic yeast Pichia pastoris. Female CD-1 mice were exposed in hyperoxia (FiO2>95%) to induce lung injury. The therapeutic effects of EC-SOD and copper-zinc SOD (CuZn-SOD) via an aerosol delivery system for lung injury and systemic oxidative stress at 24, 48, 72 and 96 h of hyperoxia were measured by bronchoalveolar lavage, wet/dry ratio, lung histology, and 8-oxo-2'-deoxyguanosine (8-oxo-dG) in lung and liver tissues. After exposure to hyperoxia, the wet/dry weight ratio remained stable before day 2 but increased significantly after day 3. The levels of oxidative biomarker 8-oxo-dG in the lung and liver were significantly decreased on day 2 (P<0.01) but the marker in the liver increased abruptly after day 3 of hyperoxia when the mortality increased. Treatment with aerosolized rhEC-SOD increased the survival rate at day 3 under hyperoxia to 95.8%, which was significantly higher than that of the control group (57.1%), albumin treated group (33.3%), and CuZn-SOD treated group (75%). The protective effects of EC-SOD against hyperoxia were further confirmed by reduced lung edema and systemic oxidative stress. Aerosolized EC-SOD protected mice against oxygen toxicity and reduced mortality in a hyperoxic model. The results encourage the use of an aerosol therapy with EC-SOD in intensive care units to reduce oxidative injury in patients with severe hypoxemic respiratory failure, including acute respiratory distress syndrome (ARDS).  相似文献   

18.
The heme pathway enzyme delta-aminolevulinate dehydratase is a good marker for oxidative stress and metal intoxication. This sulfhydryl enzyme is inhibited in such oxidative pathologies as lead, mercury and aluminum intoxication, exposure to selenium organic species and diabetes. Oxidative stress is a complicating factor in diabetes, inducing non-enzymatic glucose-mediated reactions that change protein structures and impair enzyme functions. We have studied the effects of high glucose, fructose and ribose concentrations on delta-ALA-D activity in vitro. These reducing sugars inhibited delta-ALA-D with efficacies in the order fructose=ribose>glucose. The possible mechanism of glucose inhibition was investigated using lysine, DTT, and t-butylamine. Oxidation of the enzyme's critical sulfhydryl groups was not involved because DTT had no effect. We concluded that high concentrations of reducing sugars or their autoxidation products inhibit delta-ALA-D by a mechanism not related to thiol oxidation. Also, we are not able to demonstrate that the formation of a Schiff base with the critical lysine residue of the enzyme is involved in the inhibition of delta-ALA-D by hexoses.  相似文献   

19.
Xanthine oxidoreductase (XOR) plays a prominent role in acute lung injury because of its ability to generate reactive oxygen species. We investigated the role of XOR in ventilator-induced lung injury (VILI). Male C57BL/6J mice were assigned to spontaneous ventilation (sham) or mechanical ventilation (MV) with low (7 ml/kg) and high tidal volume (20 ml/kg) for 2 h after which lung XOR activity and expression were measured and the effect of the specific XOR inhibitor allopurinol on pulmonary vascular leakage was examined. In separate experiments, rat pulmonary microvascular endothelial cells (RPMECs) were exposed to cyclic stretch (5% and 18% elongation, 20 cycles/min) for 2 h before intracellular XOR activity measurement. Lung XOR activity was significantly increased at 2 h of MV without changes in XOR expression. There was evidence of p38 MAP kinase, ERK1/2, and ERK5 phosphorylation, but no change in JNK phosphorylation. Evans blue dye extravasation and bronchoalveolar lavage protein concentration were significantly increased in response to MV, changes that were significantly attenuated by pretreatment with allopurinol. Cyclic stretch of RPMECs also caused MAP kinase phosphorylation and a 1.7-fold increase in XOR activity, which was completely abrogated by pretreatment of the cells with specific MAP kinase inhibitors. We conclude that XOR enzymatic activity is significantly increased by mechanical stress via activation of p38 MAP kinase and ERK and plays a critical role in the pathogenesis of pulmonary edema associated with VILI.  相似文献   

20.
The ability of naphthoquinones to generate reactive oxygen species has been widely exploited in studies of oxidative stress. However, excess superoxide dismutase and catalase failed to protect Escherichia coli in rich medium against growth inhibition by plumbagin, indicating that its toxic effect was not due to the production of partially reduced oxygen species. Respiration failed immediately upon the addition of growth-inhibitory levels of plumbagin. Studies in vitro showed that plumbagin and other redox-active quinones intercept electrons from NADH dehydrogenase, the primary respiratory dehydrogenase in glucose-containing media. An excess of oxidative substrate, such as plumbagin, inactivates this enzyme, which appears to be redox-regulated. The resultant respiratory arrest is a cautionary example of metabolic dysfunction from redox-cycling drugs that cannot be attributed to superoxide or hydrogen peroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号