首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interferon-gamma (IFN-gamma) contributes to host resistance during acute infection with Trypanosoma cruzi, the causative agent of Chagas' disease. Inducibly expressed guanosine triphosphatase (IGTP), a 48-kDa guanosine triphosphatase (GTPase), is a member of a family of GTPase proteins inducibly expressed by IFN-gamma. The expression pattern of IGTP suggests that it may mediate IFN-gamma-induced responses in a variety of cell types. IGTP has been demonstrated to be important for control of Toxoplasma gondii infection but not for resistance against Listeria monocytogenes. We evaluated the role of IGTP in development of chronic chagasic cardiomyopathy in IGTP null mice and C57X129sv (wild type [WT]) mice infected with the Brazil strain for 6 mo. There was no significant difference in parasitemia or cardiac histopathology between null and WT mice. Right ventricular remodeling was observed in infected IGTP null mice, suggesting that IGTP does not significantly alter the course of T. cruzi infection.  相似文献   

2.
3.
Selenium is an essential trace element and its deficiency was implicated in heart diseases. We recently showed low Se levels in chronic chagasic patients with cardiomyopathy. Herein, mice were depleted in Se by feeding the mothers with chow containing only 0.005 mg Se/kg and maintaining this diet for offspring, that were further infected with Trypanosoma cruzi. Survival rate was significantly lower in Se deficient than in control mice. Parasitemia was similar in all groups. Necrotic heart lesions were found after infection (high CK-MB levels). No outbreaks of parasite growth were detected in chronic survivors submitted or not to a second Se depletion. The present results confirm our hypothesis that a nutritional deficiency in Se is associated to a higher mortality during T. cruzi infection. The potential beneficial effect of Se supplementation is a perspective. Hypothesis to explain the higher susceptibility of Se-depleted mice to T. cruzi infection are discussed.  相似文献   

4.
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-alpha) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-alpha levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-alpha, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-alpha+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-alpha treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-alpha-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-alpha treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.  相似文献   

5.
6.
7.
Chagasic cardiomyopathy, resulting from infection with the parasite Trypanosoma cruzi, was discovered more than a century ago and remains an incurable disease. Due to the unique properties of mesenchymal stem cells (MSC) we hypothesized that these cells could have therapeutic potential for chagasic cardiomyopathy. Recently, our group pioneered use of nanoparticle-labeled MSC to correlate migration with its effect in an acute Chagas disease model. We expanded our investigation into a chronic model and performed more comprehensive assays. Infected mice were treated with nanoparticle-labeled MSC and their migration was correlated with alterations in heart morphology, metalloproteinase activity, and expression of several proteins. The vast majority of labeled MSC migrated to liver, lungs and spleen whereas a small number of cells migrated to chagasic hearts. Magnetic resonance imaging demonstrated that MSC therapy reduced heart dilatation. Additionally metalloproteinase activity was higher in heart and other organs of infected mice. Protein expression analyses revealed that connexin 43, laminin γ1, IL-10 and INF-γ were affected by the disease and recovered after cell therapy. Interestingly, MSC therapy led to upregulation of SDF-1 and c-kit in the hearts. The beneficial effect of MSC therapy in Chagas disease is likely due to an indirect action of the cells of the heart, rather than the incorporation of large numbers of stem cells into working myocardium.  相似文献   

8.
In this study, we evaluated the oxidant status and antioxidant defense capabilities of the heart during the course of Trypanosoma cruzi infection and disease development in a murine model system. Our data show that the extent of protein carbonylation and lipid peroxidation is increased in the heart, but not the skeletal muscle, of infected mice. The level of oxidative injury biomarkers in the myocardium consistently increased with chronic disease severity. The antioxidant defense constituted by catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GSR), and reduced glutathione was increased in murine heart and skeletal tissue in response to the stress of T. cruzi infection. After the initial burst, CAT, GPx, and GSR remained unresponsive to the severity of chronic tissue damage in chagasic hearts. The cardiac level of Mn(2+) superoxide dismutase (MnSOD) was diminished in chagasic mice. Our data suggest that the host responds to acute injuries by activating antioxidant defenses that are of sufficient magnitude to scavenge the reactive oxidants in skeletal tissue. The myocardia of infected mice, however, sustain increased oxidative injuries with disease progression. We surmise that MnSOD deficiencies, resulting in the increased release of mitochondrial free radicals, lead to sustained oxidative stress that exceeds the cardiac antioxidant defense capacity and contribute to persistent oxidative damage in chagasic myocardium.  相似文献   

9.
Trypanosoma cruzi is classified into two major groups named T. cruzi I and T. cruzi II. In the present work we analyzed 16 stocks isolated from human cases and four isolated from triatomines from diverse geographical origins (Mexico and Guatemala). From human cases four were acute cases, six indeterminates, and six from chronic chagasic cardiophatic patients with diagnosis of dilated cardiomyopathy established based on the left-ventricular end systolic dimension and cardiothoracic ratio on chest X-radiography and impaired contracting ventricle and different degree conduction/rhythm aberrations. DNA samples were analyzed based on mini-exon (ME) polymorphism, using a pool of three oligonucleotide for the amplification of specific intergenic region of T. cruzi ME gene. All the Mexican and Guatemalan isolates regardless their host or vector origin generated a 350 bp amplification product. In conclusion T. cruzi I is dominant in Mexico and Guatemala even in acute and chronic chagasic cardiopathy patients. To our knowledge, this is the first study describing predominance of T. cruzi I in human infection for North and Central America.  相似文献   

10.
11.
12.
Chagas' disease is an important cause of cardiomyopathy. Endothelin-1, a vasoactive peptide has been implicated in the pathogenesis of chagasic cardiomyopathy. C57BL/6 x 129sv and CD1 mice were thus, infected with trypomastigotes of Trypanosoma cruzi (Brazil strain) and these infected mice were compared with infected mice treated with phosphoramidon. This compound inhibits endothelin-converting enzyme and neutral endopeptidases and does not affect the growth of the parasite in culture. Phosphoramidon was given in a dose of 10mg/kg for the initial 15 days post-infection None of the C57Bl/6 x 129sv mice died as a result of infection. However, there was marked myocardial inflammation and fibrosis in infected, untreated mice. The hearts of the infected, phosphoramidon-treated mice showed significantly less pathology. Cardiac magnetic resonance imaging of infected mice revealed right ventricular dilation that was less severe in those treated with phosphoramidon. Phosphoramidon-treated CD1 mice survived the acute infection. Transthoracic echocardiography demonstrated left ventricular dilation and reduced percent fractional shortening and relative wall thickness. These alterations were also attenuated as a result of phosphoramidon treatment. These data suggest that endothelin-1 contributes to the pathogenesis of chagasic cardiomyopathy and interventions that inhibit the synthesis of endothelin-1 and/or neutral endopeptidase might have a protective effect on myocardial structure and function in murine Chagas' disease.  相似文献   

13.
Inflammation and oxidative stress, elicited by Trypanosoma cruzi infection, are important pathologic events during progressive Chagasic cardiomyopathy. In this study, we infected Sprague-Dawley rats with T. cruzi, and treated with phenyl-α-tert-butylnitrone (PBN-antioxidant) and/or benznidazole (BZ-anti-parasite). We employed two-dimensional gel electrophoresis/mass spectrometry to investigate (a) the plasma proteomic changes associated with infection and disease development, and (b) the beneficial effects of PBN and BZ in controlling the disease-associated plasma profile. Matrix-assisted laser desorption ionization/time of flight (MALDI-TOF) tandem MS (MS/MS) analysis of differentially expressed (total 146) and oxidized (total 48) protein spots yielded 92 unique proteins. Our data showed that treatment with PBN and BZ restored the differential expression of 65% and 30% of the disease-associated proteins to normal level, respectively, and PBN prevented development of oxidative adducts on plasma proteins. Western blotting to detect dinitrophenyl-derivatized carbonyl-proteins revealed plasma proteins were maximally oxidized during acute infection. Functional and disease/disorder analyses allocated a majority of the differentially expressed and oxidized proteins into inflammation/immunity and lipid metabolism categories and to molecular pathways associated with heart disease (e.g. cardiac infarction, contractile dysfunction, hypertrophy, and hypertension) in chagasic rats, and to curative pathways (e.g. ROS scavenging capacity, immune regulation) in infected rats treated with PBN and/or BZ. We validated the two-dimensional gel electrophoresis results by Western blotting, and demonstrated that the disease-associated increased expression of gelsolin and vimentin and release of cardiac MYL2 in the plasma of chagasic rats was returned to control level by PBN/BZ treatment. Increased plasma levels of gelsolin, MYL2 and vimentin were directly correlated with the severity of cardiac disease in human chagasic patients. Together, these results demonstrate the plasma oxidative and inflammatory response profile, and plasma detection of cardiac proteins parallels the pathologic events contributing to Chagas disease development, and is of potential utility in diagnosing disease severity and designing suitable therapy for management of human chagasic patients.  相似文献   

14.
It has been demonstrated that the acute phase of Trypanosoma cruzi infection promotes several changes in the oral glands. The present study examined whether T. cruzi modulates the expression of host cell apoptotic or mitotic pathway genes. Rats were infected with T. cruzi then sacrificed after 18, 32, 64 or 97 days, after which the submandibular glands were analyzed by immunohistochemistry. Immunohistochemical analyses using an anti-bromodeoxyuridine antibody showed that, during acute T. cruzi infection, DNA synthesizing cells in rat submandibular glands were lower than in non-infected animals (p < 0.05). However, after 64 days of infection (chronic phase), the number of immunolabeled cells are similar in both groups. However, immunohistochemical analysis of Fas and Bcl-2 expression did not find any difference between infected and non-infected animals in both the acute and chronic stages. These findings suggest that the delay in ductal maturation observed at the acute phase of Chagas disease is correlated with lower expression of DNA synthesis genes, but not apoptotic genes.  相似文献   

15.
Authors describe genitourinary changes in male hamsters infected and reinfected with Trypanosoma cruzi. Changes in genital organs have been described in human and in experimental chagasic infection. Genital dysfunctions in chronic chagasic patients affect ejaculation, libido and sexual potency, and testis biopsies may show arrested maturation of germ cells, oligozoospermia and azoospermia. Sixty-five male hamsters were inoculated and reinoculated with 2x10 trypomastigotes of T. cruzi VIC strain, and 22 non-infected animals constituted the control group. Animals were necropsied and fragments from testis, epididymis, seminal vesicle and bladder were collected and stained with hematoxylin-eosin. Peroxidase anti-peroxidase procedure was utilized to detect tissue parasitism. T. cruzi nests were found in testis, epididymis and seminal vesicle of these hamsters. Such parasitism plays a role in the origin of genital lesions observed in humans and laboratory animals during chronic chagasic infection.  相似文献   

16.
We investigated the thymic and peripheral T-lymphocyte subsets in BALB/c mice undergoing acute or chronic Trypanosoma cruzi infection, in terms of expression of particular Vbeta rearrangements of the T-cell receptor. We first confirmed the severe depletion of CD4(+)CD8(+) thymocytes following acute T. cruzi infection. By contrast, the numbers of CD4(+)CD8(+) cells in subcutaneous lymph nodes increased up to 16 times. In subcutaneous lymph nodes, we found CD4(+)CD8(+) cells that expressed prohibited segments TCRVbeta5 and TCRVbeta12 (which are physiologically deleted in the thymus of BALB/c mice), as did some mature single-positive cells (CD4(+)CD8(-) and CD4(-)CD8(+)). In the thymus of infected animals, although higher numbers of immature cells bearing such Vbeta segments were seen, they were no longer detected in the mature single-positive stage, suggesting that negative selection occurs normally. We also found increased numbers of cells bearing the potentially autoreactive phenotype TCRVbeta5(+) and TCRVbeta12(+) in T-lymphocyte subsets from subcutaneous lymph nodes of T. cruzi chronically infected mice. In conclusion, our data indicate that immature T lymphocytes bearing prohibited TCRVbeta segments leave the thymus and gain the lymph nodes, where they further differentiate into mature CD4(+) or CD8(+) cells. Conjointly, these findings show changes in the shaping of the central and peripheral T-cell repertoire in both acute and chronic phases of murine T. cruzi infection. The release of potentially autoreactive T cells in the periphery of the immune system may contribute to the autoimmune process found in both murine and human Chagas' disease.  相似文献   

17.
Chronic Chagas disease cardiomyopathy (CCC), caused by Trypanosoma cruzi, is an inflammatory dilated cardiomyopathy associated with increased circulating levels of TNF-alpha. We investigate whether TNF blockade with Etanercept during the chronic phase of T. cruzi infection could attenuate experimental CCC development. The effect of Etanercept was evaluated after 11 months of T. cruzi infection on survival, parasitism, left ventricular function, intensity of myocarditis, fibrosis, and left ventricular mRNA expression of cytokines and TNF-alpha-induced genes. Left ventricular function was significantly reduced in treated animals as compared to infected untreated animals. Blood and cardiac parasitism as well as survival rate were not altered with Etanercept treatment. Inflammatory infiltrates were located predominantly in the subendocardic region in treated animals, whereas in untreated animals inflammation was scattered throughout the myocardium. Left ventricular mRNA IL-10 expression was significantly higher, and iNOS, significantly lower in treated than in untreated animals. mRNA expression of TNF-alpha, IFN-gamma, TGF-beta, A20 and ANP was similar in both groups. Our results suggest that TNF-alpha/LT-alpha blockade with Etanercept enhances left ventricular dysfunction in T. cruzi-induced chronic cardiomyopathy and the absence of TNF signaling may be deleterious to the failing heart in Chagas disease cardiomyopathy.  相似文献   

18.
Verapamil has been shown to attenuate the extent of myocardial injury in murine models of chronic Trypanosoma cruzi infection. Infected mice treated with verapamil have significantly lower myocardial expression of inducible nitric oxide synthase and cytokines and substantially less inflammatory infiltrate and myocyte necrosis at necropsy. In the present study, we examined the cardiac structural and functional correlates of verapamil treatment in CD1 mice infected with the Brazil strain of T. cruzi using serial transthoracic echocardiography. There were four groups: uninfected- untreated control, uninfected-verapamil-treated, infected-untreated control, and infected-verapamil-treated. Verapamil was given in drinking water (1 gm/l) continuously from the day of infection for a total of 120 days. Mice were evaluated at baseline, 40 and 150 days p.i. Mice in the untreated-infected group compared with the mice in the infected-verapamil-treated group showed thinning of the left ventricular wall (0.84 +/- 0.02-vs-0.92 +/- 0.04, P<0.05 mm), increase in the left ventricular end-diastolic diameter (3.27 +/- 0.15-vs-2.74 +/- 0.05 mm, P<0.05) and reduction in percent fractional shortening (37 +/- 2-vs-53 +/- 4%, P<0.05). No differences in these parameters were noted among mice in the uninfected-untreated and uninfected-verapamil-treated groups. Furthermore, right ventricular dilation was more severe in mice from the infected-untreated group as compared with those in the infected- verapamil-treated group (visual grade 1.9 +/- 0.4-vs-1.0 +/- 0.2, P<0.05). At necropsy, the extent of myocardial injury, as determined histologically, was significantly greater in the infected-untreated mice. These data provide cardiac structural and functional correlates for the previously observed cardioprotective effects of verapamil in chronic chagasic cardiomyopathy.  相似文献   

19.
Chagas' disease, caused by Trypanosorna cruzi, is characterized by the appearance of pathological lesions in the heart and other tissues during the chronic phase. The mechanisms responsible for such damage are still unclear. In the vertebrate host, T. cruzi replicates intracellularly before transforming from amastigotes into trypomastigotes. The infected host cell then lyses, releasing the cytoplasmic contents and the parasites that shed membrane glycoproteins soon after release. The sum of all these components we have termed released antigen (Rag). We characterized antigens, released in vitro by fibroblasts infected with T. cruzi, obtained by concentrating conditioned serum-free culture media. The results demonstrate that Rag contains a complex protein mixture including stage-specific T. cruzi antigens (Ssp-1, -2, -4), glucose-regulated protein (Grp) 78h, and peptides recognized by the monoclonal antibody 2B10. These peptides exhibit neuraminidase activity and are expressed by intracellular and 10-20% of released trypomastigotes. Additionally, Rag is recognized by sera from T. cruzi-infected mice and human chagasic patients. Rag also stimulates in vitro production of interferon-gamma by splenocytes from resistant C57B1/6 and susceptible BALB/c infected mice and interleukin-4 by splenocytes from BALB/c infected mice. Altogether these results indicate that Rag is immunologically relevant and could contribute to pathogenesis of T. cruzi infection.  相似文献   

20.
Evaluation of Chagas' disease transmission through breast-feeding   总被引:2,自引:0,他引:2  
One hundred milk or colostrum samples from 78 mothers with chronic Chagas' disease were parasitologically studied for Trypanosoma cruzi infection by means of direct examination and inoculation of mice. The mice were submitted to direct blood examination three times a week. At the end of 45 days, xenodiagnosis and indirect immunofluorescent test (IFAT) for T. cruzi antibodies were carried out in the animals. No parasitized sample was observed even though five mothers had parasitemia at milk collection. In addition, 97 breast-fed children of chronic chagasic mothers, born free of infection, were tested for IgG antibodies to T. cruzi using IFAT. No case of T. cruzi infection was detected. The authors conclude that breast-feeding should not be avoided for children of chronic chagasic women. However, as these mothers had intermittent parasitemia, they should avoid nursing when there is nipple bleeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号