首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The vertical distribution of sulfate-reducing bacteria (SRB) in aerobic wastewater biofilms grown on rotating disk reactors was investigated by fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. To correlate the vertical distribution of SRB populations with their activity, the microprofiles of O(2), H(2)S, NO(2)(-), NO(3)(-), NH(4)(+), and pH were measured with microelectrodes. In addition, a cross-evaluation of the FISH and microelectrode analyses was performed by comparing them with culture-based approaches and biogeochemical measurements. In situ hybridization revealed that a relatively high abundance of the probe SRB385-stained cells (approximately 10(9) to 10(10) cells per cm(3) of biofilm) were evenly distributed throughout the biofilm, even in the oxic surface. The probe SRB660-stained Desulfobulbus spp. were found to be numerically important members of SRB populations (approximately 10(8) to 10(9) cells per cm(3)). The result of microelectrode measurements showed that a high sulfate-reducing activity was found in a narrow anaerobic zone located about 150 to 300 microm below the biofilm surface and above which an intensive sulfide oxidation zone was found. The biogeochemical measurements showed that elemental sulfur (S(0)) was an important intermediate of the sulfide reoxidation in such thin wastewater biofilms (approximately 1,500 microm), which accounted for about 75% of the total S pool in the biofilm. The contribution of an internal Fe-sulfur cycle to the overall sulfur cycle in aerobic wastewater biofilms was insignificant (less than 1%) due to the relatively high sulfate reduction rate.  相似文献   

2.
Abstract A screening of twenty-two marine isolates was made to examine their effects on corrosion of carbon steel ASTM A619. In batch cultures, sixteen of the isolates gave a lower corrosion than the control. Aerobic and anaerobic biofilm populations were formed by immersing iron coupons in natural seawater under aerobic and anaerobic conditions. The effects of the biofilms depended on a balance between the presence of oxygen and the type of population. An anaerobic population attached to the surface increased the corrosion rate if immersed in a suspension of Vibrio sp. DW1. The vibrio population probably 'protected' the anaerobic population from oxygen and may have provided nutrients, thereby creating conditions that allowed production of corrosive metabolites close to the metal. In contrast, coupons without a biofilm showed a decrease in the corrosion when immersed in the same vibrio suspension. The protective effect of a dense suspension of bacteria found earlier [5,6] was tested in situ in seawater. Iron coupons were immersed in dialysis bags with a suspension of Vibrio sp. DW1. Coupons immersed in dialysis bags with DW1 showed a lower degree of corrosion than coupons immersed in bags with seawater.  相似文献   

3.
The succession of sulfur-oxidizing bacterial (SOB) community structure and the complex internal sulfur cycle occurring in wastewater biofilms growing under microaerophilic conditions was analyzed by using a polyphasic approach that employed 16S rRNA gene-cloning analysis combined with fluorescence in situ hybridization, microelectrode measurements, and standard batch and reactor experiments. A complete sulfur cycle was established via S(0) accumulation within 80 days in the biofilms in replicate. This development was generally split into two phases, (i) a sulfur-accumulating phase and (ii) a sulfate-producing phase. In the first phase (until about 40 days), since the sulfide production rate (sulfate-reducing activity) exceeded the maximum sulfide-oxidizing capacity of SOB in the biofilms, H(2)S was only partially oxidized to S(0) by mainly Thiomicrospira denitirificans with NO(3)(-) as an electron acceptor, leading to significant accumulation of S(0) in the biofilms. In the second phase, the SOB populations developed further and diversified with time. In particular, S(0) accumulation promoted the growth of a novel strain, strain SO07, which predominantly carried out the oxidation of S(0) to SO(4)(2-) under oxic conditions, and Thiothrix sp. strain CT3. In situ hybridization analysis revealed that the dense populations of Thiothrix (ca. 10(9) cells cm(-3)) and strain SO07 (ca. 10(8) cells cm(-3)) were found at the sulfur-rich surface (100 microm), while the population of Thiomicrospira denitirificans was distributed throughout the biofilms with a density of ca. 10(7) to 10(8) cells cm(-3). Microelectrode measurements revealed that active sulfide-oxidizing zones overlapped the spatial distributions of different phylogenetic SOB groups in the biofilms. As a consequence, the sulfide-oxidizing capacities of the biofilms became high enough to completely oxidize all H(2)S produced by SRB to SO(4)(2-) in the second phase, indicating establishment of the complete sulfur cycle in the biofilms.  相似文献   

4.
AIMS: In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. METHODS AND RESULTS: Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. CONCLUSIONS: Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.  相似文献   

5.
Viable bacterial counts, chemical markers, phospholipid fatty acid analysis (PLFA), and Fourier-transformed infrared spectroscopy (FTIR), together with electrochemical methods, were used to study biofilm dynamics and its impact on the corrosion resistance of UNS S31603 stainless steels exposed to the Gulf of Mexico seawater. Biofilms progressively accumulated, peaking on day 20, but finally detached. The extracellular polysaccharide (EPS)/cellular biomass ratio remained low most of the time, but reached its highest level (4.2 ± 1.9) also on day 20. Viable bacterial cells reached their highest abundance earlier (∼800 CFU/cm2), on day 15. Biofilms were seen covering the stainless steel surfaces heterogeneously and were composed mainly of gram-negative rods, presumably EPS-producing bacteria. Despite the different levels of biofilm biomass and attachment state, field-exposed steel coupons ennobled significantly and showed more active pitting potentials (∼+500 mVSCE) than on the abiotic control (+650 mVSCE), where no significant ennoblement occurred. These results suggest that the heterogeneous distribution of biofilms, as opposed to the quantity of surface-associated biomass, promotes formation of differential aeration cells, and that this in turn contributes to the ennoblement of these steels.  相似文献   

6.
To better understand the impact of nitrate in Brazilian oil reservoirs under souring processes and corrosion, the goal of this study was to analyse the effect of nitrate on bacterial biofilms formed on carbon steel coupons using reactors containing produced water from a Brazilian oil platform. Three independent experiments were carried out (E1, E2 and E3) using the same experimental conditions and different incubation times (5, 45 and 80 days, respectively). In every experiment, two biofilm-reactors were operated: one was treated with continuous nitrate flow (N reactor), and the other was a control reactor without nitrate (C reactor). A Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis approach using the 16S rRNA gene was performed to compare the bacterial groups involved in biofilm formation in the N and C reactors. DGGE profiles showed remarkable changes in community structure only in experiments E2 and E3. Five bands extracted from the gel that represented the predominant bacterial groups were identified as Bacillus aquimaris, B. licheniformis, Marinobacter sp., Stenotrophomonas maltophilia and Thioclava sp. A reduction in the sulfate-reducing bacteria (SRB) most probable number counts was observed only during the longer nitrate treatment (E3). Carbon steel coupons used for biofilm formation had a slightly higher weight loss in N reactors in all experiments. When the coupon surfaces were analysed by scanning electron microscopy, an increase in corrosion was observed in the N reactors compared with the C reactors. In conclusion, nitrate reduced the viable SRB counts. Nevertheless, the nitrate dosing increased the pitting of coupons.  相似文献   

7.
Microelectrode, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) analyses were used to investigate the effect of nitrite and nitrate on in situ sulfide production in an activated sludge immobilized agar gel film. Microelectrode measurements of O(2), H(2)S, NO(3)(-), NO(2)(-), and pH revealed that the addition of NO(2)(-) and NO(3)(-) forced sulfate reduction zones deeper in the agar gel and significantly reduced the in situ sulfide production levels. The sulfate reduction zone was consequently separated from O(2) and NO(2)(-) or NO(3)(-) respiration zones with increasing the concentrations of NO(2)(-) and NO(3)(-). These NO(2)(-) and NO(3)(-) treatments had only a transient effect on sulfide production. The in situ sulfide production quickly recovered to the previous levels when NO(2)(-) and NO(3)(-) were removed. The PCR-DGGE and FISH analyses revealed that 2-day-continuous addition of 500 microM NO(3)(-) did not change the metabolically active sulfate-reducing bacterial (SRB) community. On the basis of these data, it could be concluded that the addition of NO(2)(-) and NO(3)(-) did not kill SRB, but induced the interspecies competition for common carbon source (i.e., acetate) between nitrate-reducing heterotrophic bacteria and SRB and enhanced the oxidation of the produced sulfide, which were main possible causes of the suppression of in situ sulfide production in the agar gel.  相似文献   

8.
Microbial communities associated to biofilms promote corrosion of oil pipelines. The community structure of bacteria in the biofilm formed in oil pipelines is the basic knowledge to understand the complexity and mechanisms of metal corrosion. To assess bacterial diversity, biofilm samples were obtained from X52 steel coupons corroded after 40 days of exposure to normal operation and flow conditions. The biofilm samples were directly used to extract metagenomic DNA, which was used as template to amplify 16S ribosomal gene by PCR. The PCR products of 16S ribosomal gene were also employed as template for sulfate-reducing bacteria (SRB) specific nested-PCR and both PCR products were utilized for the construction of gene libraries. The V3 region of the 16S rRNA gene was also amplified to analyse the bacterial diversity by analysis of denaturing gradient gel electrophoresis (DGGE). Ribosomal library and DGGE profiles exhibited limited bacterial diversity, basically including Citrobacter spp., Enterobacter spp. and Halanaerobium spp. while Desulfovibrio alaskensis and a novel clade within the genus Desulfonatronovibrio were detected from the nested PCR library. The biofilm samples were also taken for the isolation of SRB. Desulfovibrio alaskensis and Desulfovibrio capillatus, as well as some strains related to Citrobacter were isolated. SRB consists in a very small proportion of the community and Desulfovibrio spp. were the relatively abundant groups among the SRB. This is the first study directly exploring bacterial diversity in corrosive biofilms associated to steel pipelines subjected to normal operation conditions.  相似文献   

9.
The redox control bioreactor (RCB) is a new hollow fiber membrane bioreactor (HFMBR) design in which oxygen and hydrogen gases are provided simultaneously through separate arrays of juxtaposed hollow fiber (HF) membranes. This study applied the RCB for completely autotrophic conversion of ammonia to N(2) through nitrification with O(2) and denitrification using hydrogen as an electron donor (i.e., autohydrogentrophic denitrification). The hypothesis of this research was that efficient biofilm utilization of O(2) and H(2) at respective HFs would limit transport of these gases to bulk fluid, thereby enabling completely autotrophic ammonia conversion to N(2) through the co-occurrence of ammonia oxidation (O(2)-HF biofilms) and autohydrogenotrophic denitrification (H(2)-HF biofilms). A prototype RCB was fabricated and operated for 215 days on a synthetic, organic-free feedstream containing 217 mg L(-1) NH(4)(+)-N. When O(2) and H(2) were simultaneously supplied, the RCB achieved a steady NH(4)(+)-N removal flux of 5.8 g m(-2) day(-1) normalized to O(2)-HF surface area with a concomitant removal flux of 4.4 g m(-2) day(-1) (NO(3)(-))+NO(2)(-))-N based on H(2)-HF surface area. The significance of H(2) supply was confirmed by an increase in effluent NO(3)(-)-N when H(2) supply was discontinued and a decline in NO(3)(-)-N when H(2) supply was restarted. Increases in H(2) pressure caused decreased ammonia utilization, suggesting that excess H(2) interfered with nitrification. Microprobe profiling across radial transects revealed significant gradients in dissolved O(2) on spatial scales of 1 mm or less. Physiological and molecular analysis of biofilms confirmed that structurally and functionally distinct biofilms developed on adjacent, juxtaposed fibers.  相似文献   

10.
11.
Jain A  Bhosle NB 《Biofouling》2008,24(4):283-290
Pseudomonas sp CE-2 cells attach and form biofilms on 304-stainless steel (SS) coupons. A series of experiments were carried out in order to understand the role of exopolysaccharides (EPS) in the formation and maintenance of CE-2 biofilms on SS coupons. The biofilm density and EPS concentration increased over the period of incubation and the highest values for both were recorded after 72 h. Calcofluor and the lectin concanavalin A (Con A) showed a positive interaction with 72-h old biofilms, indicating the presence of beta 1-4 linked polymers, and alpha-d-glucose and alpha-d-mannose in the biofilm matrix of CE-2. When the CE-2 cells were grown in the presence of calcofluor (200 microg ml(-1)), biofilm formation was significantly reduced (approximately 85%). Conversely, the lectins Con A or WGA did not influence the CE-2 biofilms on the SS coupons. Furthermore, treatment with cellulase, an enzyme specific for the degradation of beta 1-4 linked polymers, removed substantial amounts of CE-2 biofilm from SS coupons. These results strongly suggest the involvement of beta 1-4 linked polymers in the formation and maintenance of Pseudomonas sp. CE-2 biofilms on SS coupons.  相似文献   

12.
The functional robustness of biofilms in a wastewater nitrification reactor, and the gene pools therein, were investigated. Nitrosomonas and Nitrosospira spp. were present in similar amounts (cloning-sequencing of ammonia-oxidizing bacteria 16S rRNA gene), and their estimated abundance (1.1 x 10(9) cells g(-1) carrier material, based on amoA gene real-time PCR) was sufficient to explain the observed nitrification rates. The biofilm also had a diverse community of heterotrophic denitrifying bacteria (cloning-sequencing of nirK). Anammox 16S rRNA genes were detected, but not archaeal amoA. Dispersed biofilms (DB) and intact biofilms (IB) were incubated in gas-tight reactors at different pH levels (4.5 and 5.5 vs. 6.5) while monitoring O(2) depletion and concentrations of NO, N(2)O and N(2) in the headspace. Nitrification was severely reduced by suboptimal O(2) concentrations (10-100 microM) and low pH (IB was more acid tolerant than DB), but the N(2)O/NO(3)(-) product ratio of nitrification remained low (<10(-3)). The NO(2)(-) concentrations during nitrification were generally 10 times higher in DB than in IB. Transient NO and N(2)O accumulation at the onset of denitrification was 10-10(3) times higher in DB than in IB (depending on the pH). The contrasting performance of DB and IB suggests that the biofilm structure, with anoxic/micro-oxic zones, helps to stabilize functions during anoxic spells and low pH.  相似文献   

13.
NO(3)(-) is present at micromolar concentrations in seawater and must be absorbed by marine plants against a steep electrochemical potential difference across the plasma membrane. We studied NO(3)(-) transport in the marine angiosperm Zostera marina L. to address the question of how NO(3)(-) uptake is energized. Electrophysiological studies demonstrated that micromolar concentrations of NO(3)(-) induced depolarizations of the plasma membrane of leaf cells. Depolarizations showed saturation kinetics (K(m) = 2.31 +/- 0.78 microM NO(3)(-)) and were enhanced in alkaline conditions. The addition of NO(3)(-) did not affect the membrane potential in the absence of Na(+), but depolarizations were restored when Na(+) was resupplied. NO(3)(-)-induced depolarizations at increasing Na(+) concentrations showed saturation kinetics (K(m) = 0.72 +/- 0.18 mM Na(+)). Monensin, an ionophore that dissipates the Na(+) electrochemical potential, inhibited NO(3)(-)-evoked depolarizations by 85%, and NO(3)(-) uptake (measured by depletion from the external medium) was stimulated by Na(+) ions and by light. Our results strongly suggest that NO(3)(-) uptake in Z. marina is mediated by a high-affinity Na(+)-symport system, which is described here (for the first time to our knowledge) in an angiosperm. Coupling the uptake of NO(3)(-) to that of Na(+) enables the steep inwardly-directed electrochemical potential for Na(+) to drive net accumulation of NO(3)(-) within leaf cells.  相似文献   

14.
To investigate if corrosion inhibition by aerobic biofilms is a general phenomenon, carbon steel (SAE 1018) coupons were exposed to a complex liquid medium (Luria–Bertani) and seawater-mimicking medium (VNSS) containing fifteen different pure-culture bacterial suspensions representing seven genera. Compared to sterile controls, the mass loss in the presence of these bacteria (which are capable of developing a biofilm to various degrees) decreased by 2- to 15-fold. The extent of corrosion inhibition in LB medium depended on the nature of the biofilm: an increased proportion of live cells, observed with confocal scanning laser microscopy (CSLM) and image analysis, decreased corrosion. Corrosion inhibition in LB medium was greatest with Pseudomonas putida (good biofilm formation), while metal coupons exposed to Streptomyces lividans in LB medium (poor biofilm formation) corroded in a manner similar to the sterile controls. Pseudomonas mendocina KR1 reduced corrosion the most in VNSS. It appears that only a small layer of active, respiring cells is required to inhibit corrosion, and the corrosion inhibition observed is due to the attached biofilm. Received 09 December 1996/ Accepted in revised form 19 March 1997  相似文献   

15.
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.  相似文献   

16.
Marine prosthecate bacteria involved in the ennoblement of stainless steel   总被引:2,自引:0,他引:2  
Ennoblement, a phenomenon in which open-circuit potential is elevated to a noble value, triggers metal corrosion in the environment and is considered to be biologically catalysed. This study investigated the involvement of marine microorganisms in the ennoblement of stainless steel coupons in sea water pumped from Kamaishi Bay. Scanning electron microscopy (SEM) showed significant attachment of prosthecate bacteria on the surfaces of stainless steel coupons in the course of ennoblement. In denaturing gradient gel electrophoresis (DGGE) analyses of polymerase chain reaction-amplified bacterial 16S rDNA fragments, several major bands were detected from the surface of the ennobled coupons, including those affiliated with the alpha and gamma subclasses of the Proteobacteria. After these observations, bacterial strains were isolated from the surface of the ennobled coupon. The 16S rDNA analysis revealed that a bacterial isolate (designated PWB3) corresponded to a major DGGE band representing an alpha-Proteobacterial population; a database analysis showed that its closest relative was Rhodobium spp., albeit with low homology ( approximately 89%). SEM indicated that this bacterium was a prosthecate bacterium that was morphologically similar to those observed on the ennobled coupons. In pure culture of strain PWB3, stainless steel coupons were ennobled when the culture was supplemented with MnCl2. Manganese was recovered from the surface of the ennobled coupons after treatment with a reducing agent. These results suggest that the attachment of manganese-oxidizing prosthecate bacteria triggered the ennoblement of stainless steel in Kamaishi Bay sea water.  相似文献   

17.
Pseudomonas sp CE-2 cells attach and form biofilms on 304-stainless steel (SS) coupons. A series of experiments were carried out in order to understand the role of exopolysaccharides (EPS) in the formation and maintenance of CE-2 biofilms on SS coupons. The biofilm density and EPS concentration increased over the period of incubation and the highest values for both were recorded after 72 h. Calcofluor and the lectin concanavalin A (Con A) showed a positive interaction with 72-h old biofilms, indicating the presence of β 1-4 linked polymers, and α-d-glucose and α-d-mannose in the biofilm matrix of CE-2. When the CE-2 cells were grown in the presence of calcofluor (200 μg ml?1), biofilm formation was significantly reduced (~85%). Conversely, the lectins Con A or WGA did not influence the CE-2 biofilms on the SS coupons. Furthermore, treatment with cellulase, an enzyme specific for the degradation of β 1-4 linked polymers, removed substantial amounts of CE-2 biofilm from SS coupons. These results strongly suggest the involvement of β 1-4 linked polymers in the formation and maintenance of Pseudomonas sp. CE-2 biofilms on SS coupons.  相似文献   

18.
The relationship between corrosion and biodegradation of bio- and petroleum-based fuels was evaluated using aerobic seawater, fuel and unprotected carbon steel coupons under stagnant conditions to simulate a potential fuel storage condition. Aerobic respiration and corrosion reactions consumed oxygen in the incubations in a short time. The transient oxygen influenced the microbial biodegradation of all fuels and resulted in a suite of characteristic metabolites, including catechols. The corrosion was believed to be the result of biogenic sulfide production and in all cases, the black corrosion products contained chlorine and sulfur (presumed chloride and sulfide) in addition to iron. There were few differences in electrochemically measured corrosion rates in incubations amended with any of the fuels or their blends. Clone library analysis demonstrated higher proportions of Firmicutes, Deltaproteobacteria (primarily sulfate-reducing bacteria), Chloroflexi, and Lentisphaerae in incubations exposed to fuels than the original seawater. Relative proportions of sequences affiliated with these bacterial groups varied with fuel. Methanogen sequences similar to those of Methanolobus were also found in multiple incubations. Despite the dominance of characteristically anaerobic taxa, sequences coding for an alkane monooxygenase from marine hydrocarbon-degrading genera and aerobically produced intermediates were observed, indicative that organisms with this metabolic potential were active at some point during the incubation. Aerobic oxidation of fuel components resulted in the formation of a series of intermediates that could be used by anaerobic seawater microbial communities to support metabolism, sulfide production, and carbon steel corrosion.  相似文献   

19.
Tests were conducted on the performance of UNS S31600 stainless steel (SS) in a natural day/night cycle vs full darkness under conditions of natural marine biofilm accumulation. In quiescent flowing seawater tests in the laboratory as well as under natural immersion in the sea, diffuse sunlight (~10% of natural) counteracted the influence of marine biofilms and produced substantial inhibition of the corrosion of SS. Thus, the probabilities (percentage attack) and propagation rates (depths of attack) in multiple crevice tests were substantially lower in the day/night cycle than in the dark. A benefit was also observed for welded SS in terms of the time to corrosion initiation and the mass loss. SS in the passive state showed broader passive regions, well-defined breakdown potentials and markedly smaller anodic and cathodic current densities under the diurnal cycle. The overall reduction in corrosion is attributed to a combination of electrochemical photoinhibition and simultaneous photoinactivation of microbially mediated metal redox reactions linked to cathodic kinetics. These data offer fresh insights into the behaviour of SS under practical seawater situations and the proposed potential use of illumination in the mitigation of biologically influenced consequences.  相似文献   

20.

AISI Type 304 L stainless steel (SS) is a widely used material in industry due to its strength and resistance to corrosion. However, corrosion on SS is reported largely at welds or adjacent areas. Bacteria were observed to colonize preferentially near welds as a result of surface roughness. In the present study, the influence of another important metal surface condition on bacterial adhesion has been evaluated, i.e. substratum microstructure. Type 304 L SS weld samples were prepared and machined to separate weld metal, the heat affected zone (HAZ) and base metal regions. The coupons were molded in resin so that only the surfaces polished to a 3 p.m finish were exposed to the experimental medium with Pseudomonas sp. isolated from a corrosive environment in Japan. The coupons were exposed for varying durations. The area of bacterial attachment showed significant differences with time of exposure and; the type of coupons. Generally, the weld metal samples showed more attachment whilst the base metal showed the least. The area of attachment was inversely proportional to the average grain size of the three samples. As the bacteria started colonizing, attachment mainly occurred on the grain boundaries of the base metal (after 8h, 84.62% and 15.38% of the total number of bacteria attached in the field of view (FOV) at the grain boundary and matrix, respectively) and on the austenite‐ferrite interface in the weld metal (after 8h, 88.33% and 11.77% of the total number of bacteria attached in the FOV at the boundary and matrix, respectively). The weld area had more grains and hence more grain boundary/ unit area than the base metal, resulting in more bacterial attachment. SEM observations showed this increased attachment of Pseudomonas sp. resulted in the initiation of microbiologically influenced corrosion (MIC) on the weld coupons by 16 d. Therefore, the results provide data to support the fact that substratum microstructure influences bacterial attachment, which in turn leads to corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号