首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Conjugative transfer of IncN plasmid pKM101 is mediated by the TraI-TraII region-encoded transfer machinery components. Similar to the case for the related Agrobacterium tumefaciens T-complex transfer apparatus, this machinery is needed for assembly of pili to initiate cell-to-cell contact preceding DNA transfer. Biochemical and cell biological experiments presented here show extracellular localization of TraC, as suggested by extracellular complementation of TraC-deficient bacteria by helper cells expressing a functional plasmid transfer machinery (S. C. Winans, and G. C. Walker, J. Bacteriol. 161:402-410, 1985). Overexpression of TraC and its export in large amounts into the periplasm of Escherichia coli allowed purification by periplasmic extraction, ammonium sulfate precipitation, and column chromatography. Whereas TraC was soluble in overexpressing strains, it partly associated with the membranes in pKM101-carrying cells, possibly due to protein-protein interactions with other components of the TraI-TraII region-encoded transfer machinery. Membrane association of TraC was reduced in strains carrying pKM101 derivatives with transposon insertions in genes coding for other essential components of the transfer machinery, traM, traB, traD, and traE but not eex, coding for an entry exclusion protein not required for DNA transfer. Cross-linking identified protein-protein interactions of TraC in E. coli carrying pKM101 but not derivatives with transposon insertions in essential tra genes. Interactions with membrane-bound Tra proteins may incorporate TraC into a surface structure, suggested by its removal from the cell by shearing as part of a high-molecular-weight complex. Heterologous expression of TraC in A. tumefaciens partly compensated for the pilus assembly defect in strains deficient for its homolog VirB5, which further supported its role in assembly of conjugative pili. In addition to its association with high-molecular-weight structures, TraC was secreted into the extracellular milieu. Conjugation experiments showed that secreted TraC does not compensate transfer deficiency of TraC-deficient cells, suggesting that extracellular complementation may rely on cell-to-cell transfer of TraC only as part of a bona fide transfer apparatus.  相似文献   

3.
TraC is one of the proteins encoded by the F transfer region of the F conjugative plasmid which is required for the assembly of F pilin into the mature F pilus structure. Overproduction of this protein from the plasmid pKAS2, which carries only traC, resulted in the formation of inclusion bodies from which soluble TraC was purified. When small amounts of TraC were produced from pKAS2, the protein was localized to the cytoplasm by using anti-TraC antibodies. Similar analysis of a set of TraC-alkaline phosphatase fusion proteins localized all of these fusion proteins to the cytoplasm. However, when TraC was expressed from the F plasmid, much of it appeared associated with the bacterial membrane fraction. Under these conditions, TraC does not appear to be part of the tip of the F pilus, as neither anti-TraC antibodies nor purified TraC had any effect on the infection of F-containing bacteria by the filamentous bacteriophage f1. These data suggest that TraC is normally associated with the membrane through interactions with other proteins specified by the tra region. This interaction may be via the carboxyl-terminal region of the TraC protein, as a mutant TraC protein containing an Arg-Cys substitution at amino acid 811 exhibits an interaction with the membrane weaker than that of the wild-type protein in the presence of the other Tra proteins.  相似文献   

4.
Theoriregion of anErwinia stewartiiplasmid, pSW1200 (106 kb), has been cloned and sequenced. This region consists of a gene encoding a protein which has 91% similarity and 73% identity with the RepA protein of bacteriophage P1. Theoriregion also consists of eight copies of 19-bp iterons which are highly homologous to the iterons of P1. Similar to plasmid P1, pSW1200 replicon has a copy number of approximately 1. On the other hand, the copy number increases about ninefold if three of the iterons located downstream fromrepAgene are deleted. We also demonstrate that pGEM-5Z consisting of a copy of P1 iteron is incompatible with a pSW1200 derivative, pSW1201, suggesting that pSW1200 and P1 DNA are incompatible and both belong to the IncY group.  相似文献   

5.
Shuttle vectors for gene transfer between Streptomyces spp. and Escherichia coli have been constructed by fusion of an artificial multicopy E. coli replicon and DNA fragments of pIJ702. Stable transfer to Streptomyces lividans was obtained. Marked differences in transformation efficiency were observed when plasmid DNA isolated from E. coli GM119 was used instead of that from strain HB101.  相似文献   

6.
Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope‐spanning translocation channel, and those functioning in Gram‐negative species additionally elaborate an extracellular pilus to initiate donor‐recipient cell contacts. We report that pKM101, a self‐transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101‐encoded proteins, the pilus‐tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface‐displayed TraC and Pep are required for an efficient conjugative transfer, ‘extracellular complementation’ potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the β‐barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS‐encoded, pilus‐independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.  相似文献   

7.
Streptococcus parasanguinis is among the most successful colonizers of the human body. Strain FW213 harbors a 7.0-kb cryptic plasmid, pFW213, with a copy number at 5 to 10 per chromosome. Sequence and functional analyses of pFW213 revealed that the open reading frame (ORF) encoding the replication protein (Rep) is essential for the replication of pFW213, and the putative plasmid addiction system (RelB and RelE) and an ORF (ORF6) with no known function are required for its stability. The minimal replicon of pFW213 contains the rep gene and its 5'-flanking 390-bp region. Within the minimal replicon, an A/T-rich region followed by 5 contiguous 22-bp repeats was located 5' of the ATG of rep. No single-stranded replication intermediates were detected in the derivatives of pFW213, suggesting that pFW213 replicates via the theta replication mechanism. The minimal replicon was unstable in streptococcal hosts without selection, but the stability was greatly enhanced in derivatives containing the intact relBE genes. A Streptococcus-Escherichia coli shuttle vector, pCG1, was constructed with the pFW213 replicon. Plasmid pCG1 features a multiple cloning region and a spectinomycin resistance determinant that is expressed in both Streptococcus spp. and E. coli. Various streptococcal DNA fragments were cloned in pCG1, and the recombinant constructs were stably maintained in the streptococcal hosts. Since pCG1 is compatible with the most widely used streptococcal replicon, pVA380-1, pCG1 will provide a much needed tool allowing the cloning of two genes that work in concert in the same host.  相似文献   

8.
Abstract The plasmid vector pAT153 was rapidly lost from carbon-limited continuous cultures of Escherichia coli HB101 (pAT153) at a dilution rate of 0.15 h−1. In one experiment, the plasmid was maintained by 80% of the host bacteria for up to 35 generations. The tetracycline-resistance gene was not expressed from the majority of the plasmid DNA in this population of E. coli HB101 due to transposition of IS1 from the bacterial chromosome into the aminoterminal region of the tet gene of pAT153. This plasmid, pLCX1, when isolated and retransformed into E. coli HB101, was more stably maintained than pAT153. Similar plasmids have been isolated from other glucose, phosphate, ammonium and sulphate-limited chemostats.  相似文献   

9.
The replicator region of a low-copy-number plasmid, pALC1, of Paracoccus alcaliphilus JCM 7364 was cloned in a form of the minireplicon pALC100 (3.6 kb). The host range of the minireplicon embraces several species of genus Paracoccus, as well as Agrobacterium tumefaciens, Rhizobium leguminosarum, and Rhodobacter sphaeroides (all belonging to alpha-Proteobacteria), but not Escherichia coli. The complete nucleotide sequence of the replicator region (2276 bp) revealed the presence of one complete open reading frame coding for the 28.4-kDa protein (RepA) with similarity to replication proteins of plasmid pSW500 of Erwinia stewartii and pVS1 of Pseudomonas fluorescens. The iteron-like region was identified upstream of the repA gene and consisted of two clusters of repeated sequences (17 bp long) separated by a putative DnaA box. Analysis of the predicted amino acid sequence of two adjacent incomplete ORFs suggests the localization of repA between genes involved in conjugation (traG) and partitioning (parA) within the pALC1 genome.  相似文献   

10.
11.
Two different agarase genes (pSW1, pSW3) were cloned from a marine bacterium Pseudomonas sp. W7 into E. coli JM83 using the multicopy plasmid vector pUC19. Two cloned strains of recombinant E. coli which showed the agarase activity were obtained and were named E. coli JM83/pSW1 and E. coli JM83/pSW3. These strains had the insert fragment of 3.7kb and 3.0kb, respectively. The N-terminal amino acid sequence of the agarase containing the recombinant plasmid pSW3 was determined and the sequence did not show homology to any other known agarases. The optimum pH and temperature of the agarases from the cloned strains, E. coli JM83/pSW1 and pSW3, were 6.0, 7.0 and 30°C, 40°C, respectively.  相似文献   

12.
Two plasmids, 76 and 148 kb in size, isolated from Ruegeria strain PR1b were entirely sequenced. These are the first plasmids to be characterized from this genus of marine bacteria. Sequence analysis revealed a biased distribution of function among the putative proteins encoded on the two plasmids. The smaller plasmid, designated pSD20, encodes a large number of putative proteins involved in polysaccharide biosynthesis and export. The larger plasmid, designated pSD25, primarily encodes putative proteins involved in the transport of small molecules and in DNA mobilization. Sequence analysis revealed uncommon potential replication systems on both plasmids. pSD25, the first repABC-type replicon isolated from the marine environment, actually contains two repABC-type replicons. pSD20 contains a complex replication region, including a replication origin and initiation protein similar to iteron-containing plasmids (such as pSW500 from the plant pathogen Erwinia stewartii) linked to putative RepA and RepB stabilization proteins of a repABC-type replicon and is highly homologous to a plasmid from the phototrophic bacterium Rhodobacter sphaeroides. Given the nature of the putative proteins encoded by both plasmids it is possible that these plasmids enhance the metabolic and physiological flexibility of the host bacterium, and thus its adaptation to the marine sediment environment.  相似文献   

13.
Escherichia coli is capable of synthesizing the apo-glucose dehydrogenase enzyme (GDH) but not the cofactor pyrroloquinoline quinone (PQQ), which is essential for formation of the holoenzyme. Therefore, in the absence of exogenous PQQ, E. coli does not produce gluconic acid. Evidence is presented to show that the expression of an Erwinia herbicola gene in E. coli HB101(pMCG898) resulted in the production of gluconic acid, which, in turn, implied PQQ biosynthesis. Transposon mutagenesis showed that the essential gene or locus was within a 1.8-kb region of a 4.5-kb insert of the plasmid pMCG898. This 1.8-kb region contained only one apparent open reading frame. In this paper, we present the nucleotide sequence of this open reading frame, a 1,134-bp DNA fragment coding for a protein with an M(r) of 42,160. The deduced sequence of this protein had a high degree of homology with that of gene III (M(r), 43,600) of a PQQ synthase gene complex from Acinetobacter calcoaceticus previously identified by Goosen et al. (J. Bacteriol. 171:447-455, 1989). In minicell analysis, pMCG898 encoded a protein with an M(r) of 41,000. These data indicate that E. coli HB101(pMCG898) produced the GDH-PQQ holoenzyme, which, in turn, catalyzed the oxidation of glucose to gluconic acid in the periplasmic space. As a result of the gluconic acid production, E. coli HB101(pMCG898) showed an enhanced mineral phosphate-solubilizing phenotype due to acid dissolution of the hydroxyapatite substrate.  相似文献   

14.
将苏云金芽胞杆菌以色列亚种的杀蚊晶体蛋白基因cry11A亚克隆到大肠杆菌-蓝藻的穿梭质粒载体pRL25C,然后用三亲本杂交的方法将重组质粒转移到一种具有固氮能力且可被蚊幼虫吞食的鱼腥藻(Anabaena)PCC7120中。Southernblot及Westernblot分析表明cry11A基因在鱼腥藻PCC7120中得以克隆和表达,但生物测定未能检测到转基因鱼腥藻对库蚊(Culex)的毒性,可能是因为带有苏云金芽胞杆菌自身启动子的Cry11A基因在鱼腥藻PCC7120中表达量不够高的缘故。  相似文献   

15.
Abstract We report here the isolation of a Renibacterium salmoninarum DNA sequence capable of transforming a non-invasive Escherichia coli strain into a microorganism able to enter the fish cell line, CHSE-214. Immunofluorescence and electron microscopy techniques were used to assess the acquired invasive phenotype by HB101 E. coli cells, upon transformation with pPMV-189. This plasmid carries a 2282-bp R. salmoninarum DNA segment. The invasive phenotype is qonserved upon deletion of approximately 1000 bp at the 3' end of the insert. The remaining segment contains an ORF region encoding a putative protein of about 30 kDa.  相似文献   

16.
17.
Plasmid genes or regions that are conditionally lethal to Escherichia coli have been called kil and those lethal to Klebsiella but not to E. coli have been called kik. Both classes of genes are found in or close to the N pilus region of the plasmid pCU1 and the closely related plasmid pKM101. Here we describe two new and overlapping lethal genes that are located between kikA and traA of the plasmid pCU1 and display host specificity. KilC is lethal in E. coli and Klebsiella while kikC is lethal only in Klebsiella. The previously identified korA gene is sufficient to override the lethality of kilC in trans or in cis but is insufficient to override kikC. kilC expression in E. coli leads to cell death accompanied by an increase in average cell length without affecting septum formation.  相似文献   

18.
We constructed a new type of cloning vector, pERISH2, that transforms Escherichia coli HB101 only when a foreign DNA fragment is ligated into the cloning site of the plasmid vector. Plasmid pERISH2 carries the rcsB gene which is derived from the chromosome of E. coli HB101 and is involved in the regulation of colanic acid production. When E. coli HB101 is transformed by this vector carrying the intact rcsB gene, the gene product RcsB blocks bacterial growth. However, if the rcsB gene is inactivated by the insertion of a foreign DNA fragment, this recombinant plasmid no longer inhibits the growth of E. coli HB101. Although E. coli HB101 is not stably transformed by pERISH2, E. coli K-12 strains such as JM109 and C600 can harbor this vector. Therefore, pERISH2 can be amplified in JM109 and be prepared from this strain in a large quantity using conventional methods. A chromosomal gene library of Klebsiella pneumoniae is constructed easily and efficiently by the utilization of this new cloning vector.  相似文献   

19.
Centrifugation through a cesium chloride density gradient and agarose gel electrophoresis of the DNA from the purple non-sulfur photosynthetic bacterium Ectothiorhodospira sp. resolved a single extrachromosomal element, plasmid pDG1. Its size was estimated to be 13.2 kilobases by restriction endonuclease mapping. Plasmid pDG1 and two restriction fragments thereof were cloned in Escherichia coli C600 with plasmid pBR327 as a vector to form mixed plasmids pDGBR1, pDGBR2, and pDGBR3. The resistance to streptomycin and mercury found in Ectothiorhodospira sp. was transferred to E. coli C600 after transformation with pDGBR1 but not with pDGBR2 and pDGBR3. The replication origin of pDG1 was estimated to be within a 2-kilobase restriction fragment of pDG1 by monitoring its replication in E. coli HB101, using a kanamycin resistance reporter gene. High stringency molecular hybridization with 32P-labeled pDG1 identified specific fragments of genomic DNA, suggesting the integration of some plasmid sequences. In accordance with the hypothesis that this integration is due to a transposon, we tested the transfer of streptomycin resistance from pDG1 into plasmid pVK100 used as a target. For this test, we regrouped in the same cells of E. coli HB101, pDGBR1 and mobilizable plasmid pVK100 (tetr,kmr). We used the conjugation capacity of the pVK100/pRK2013 system to rescue the target plasmid pVK100 into nalidixic acid-resistant E. coli DH1. The transfer frequency of streptomycin resistance into pVK100 was 10(-5), compatible with a transposition event. In line with the existence of a transposon on pDG1, heteroduplex mapping indicated the presence of inverted repeats approximately 7.5 kb from one another.  相似文献   

20.
Boundaries of the pSC101 minimal replicon are conditional.   总被引:5,自引:3,他引:2       下载免费PDF全文
The DNA segment essential for plasmid replication commonly is referred to as the core or minimal replicon. We report here that host and plasmid genes and sites external to the core replicon of plasmid pSC101 determine the boundaries and competence of the replicon and also the efficiency of partitioning. Missense mutations in the plasmid-encoded RepA protein or mutation of the Escherichia coli topoisomerase I gene enable autonomous replication of a 310-bp pSC101 DNA fragment that contains only the actual replication origin plus binding sites for RepA and the host-encoded DnaA protein. However, in the absence of a repA or topA mutation, the DNA-bending protein integration host factor (IHF) and either of two cis-acting elements are required. One of these, the partitioning (par) locus, is known to promote negative DNA supercoiling; our data suggest that the effects of the other element, the inverted repeat (IR) sequences that overlap the repA promoter, are mediated through the IR's ability to bind RepA. The concentrations of RepA and DnaA, which interact with each other and with plasmid DNA in the origin region (T. T. Stenzel, T. MacAllister, and D. Bastia, Genes Dev. 5:1453-1463, 1991), also affect both replication and partitioning. Our results, which indicate that the sequence requirements for replication of pSC101 are conditional rather than absolute, compel reassessment of the definition of a core replicon. Additionally, they provide further evidence that the origin region RepA-DnaA-DNA complex initiating replication of pSC101 also mediates the partitioning of pSC101 plasmids at cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号