首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane- associated guanylate kinase proteins (MAGUKs) are important determinants of localization and organization of ion channels into specific plasma membrane domains. However, their exact role in channel function and cardiac excitability is not known. We examined the effect of synapse-associated protein 97 (SAP97), a MAGUK abundantly expressed in the heart, on the function and localization of Kv1.5 subunits in cardiac myocytes. Recombinant SAP97 or Kv1.5 subunits tagged with green fluorescent protein (GFP) were overexpressed in rat neonatal cardiac myocytes and in Chinese hamster ovary (CHO) cells from adenoviral or plasmidic vectors. Immunocytochemistry, fluorescence recovery after photobleaching, and patch-clamp techniques were used to study the effects of SAP97 on the localization, mobility, and function of Kv1.5 subunits. Adenovirus-mediated SAP97 overexpression in cardiac myocytes resulted in the clustering of endogenous Kv1.5 subunits at myocyte-myocyte contacts and an increase in both the maintained component of the outward K(+) current, I(Kur) (5.64 +/- 0.57 pA/pF in SAP97 myocytes vs. 3.23 +/- 0.43 pA/pF in controls) and the number of 4-aminopyridine-sensitive potassium channels in cell-attached membrane patches. In live myocytes, GFP-Kv1.5 subunits were mobile and organized in clusters at the basal plasma membrane, whereas SAP97 overexpression reduced their mobility. In CHO cells, Kv1.5 channels were diffusely distributed throughout the cell body and freely mobile. When coexpressed with SAP97, Kv subunits were organized in plaquelike clusters and poorly mobile. In conclusion, SAP97 regulates the K(+) current in cardiac myocytes by retaining and immobilizing Kv1.5 subunits in the plasma membrane. This new regulatory mechanism may contribute to the targeting of Kv channels in cardiac myocytes.  相似文献   

2.
The activity of voltage-gated potassium (Kv) channels, and consequently their influence on cellular functions, can be substantially altered by phosphorylation. Several protein kinases that modulate Kv channel activity are found in membrane subdomains known as lipid rafts, which are thought to organize signaling complexes in the cell. Thus, we asked whether Kv1.4 and Kv4.2, two channels with critical roles in excitable cells, are found in lipid rafts. Acylation can target proteins to raft regions; however, Kv channels are not acylated, and therefore, a different mechanism must exist to bring them into these membrane subdomains. Because both Kv1.4 and Kv4.2 interact with postsynaptic density protein 95 (PSD-95), which is acylated (specifically, palmitoylated), we examined whether PSD-95 can recruit these channels to lipid rafts. We found that a portion of Kv1.4 and Kv4.2 protein in rat brain membranes is raft-associated. Lipid raft patching and immunostaining confirmed that some Kv4.2 is in Thy-1-containing rafts in rat hippocampal neurons. Using a heterologous expression system, we determined that palmitoylation of PSD-95 was crucial to its localization to lipid rafts. We then assessed the contribution of PSD-95 to the raft association of these channels. Co-expression of PSD-95 increased the amount of Kv1.4, but not Kv4.2, in lipid rafts. Deleting the PSD-95 binding motif of Kv1.4 eliminated this recruitment, as did substituting a palmitoylation-deficient PSD-95 mutant. This work represents the first evidence that PSD-95 binding can recruit Kv channels into lipid rafts, a process that could facilitate interactions with the protein kinases that affect channel activity.  相似文献   

3.
S-Palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by ∼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.  相似文献   

4.
Palmitoylation is emerging as an important and dynamic regulator of ion channel function; however, the specificity with which the large family of acyl palmitoyltransferases (zinc finger Asp-His-His-Cys type-containing acyl palmitoyltransferase (DHHCs)) control channel palmitoylation is poorly understood. We have previously demonstrated that the alternatively spliced stress-regulated exon (STREX) variant of the intracellular C-terminal domain of the large conductance calcium- and voltage-activated potassium (BK) channels is palmitoylated and targets the STREX domain to the plasma membrane. Using a combined imaging, biochemical, and functional approach coupled with loss-of-function (small interfering RNA knockdown of endogenous DHHCs) and gain-of-function (overexpression of recombinant DHHCs) assays, we demonstrate that multiple DHHCs control palmitoylation of the C terminus of STREX channels, the association of the STREX domain with the plasma membrane, and functional channel regulation. Cysteine residues 12 and 13 within the STREX insert were the only endogenously palmitoylated residues in the entire C terminus of the STREX channel. Palmitoylation of this dicysteine motif was controlled by DHHCs 3, 5, 7, 9, and 17, although DHHC17 showed the greatest specificity for this site upon overexpression of the cognate DHHC. DHHCs that palmitoylated the channel also co-assembled with the channel in co-immunoprecipitation experiments, and knockdown of any of these DHHCs blocked regulation of the channel by protein kinase A-dependent phosphorylation. Taken together our data reveal that a subset of DHHCs controls STREX palmitoylation and function and suggest that DHHC17 may preferentially target cysteine-rich domains. Finally, our approach may prove useful in elucidating the specificity of DHHC palmitoylation of intracellular domains of other ion channels and transmembrane proteins.  相似文献   

5.
The Ca(2+)-binding proteins KChIP1-4 (KChIP3 is also known as DREAM and calsenilin) act as auxiliary subunits for voltage-gated K(+) channels in the Kv4 family. Here we identify three splicing isoforms of rat KChIP2 with variable N-terminal peptides. The two longer isoforms, which contain the 32-amino acid peptide, produce larger increases in Kv4.3 protein level and current density and more effectively localize themselves and their associated channels at the plasma membrane than the shortest variant. The 32-amino acid peptide contains potential palmitoylation cysteines. Metabolic labeling demonstrates that these cysteines in the KChIP2 isoforms, as well as the corresponding sites in KChIP3, are palmitoylated. Mutating these cysteines reduces their plasma membrane localization and the enhancement of Kv4.3 current density. Thus, palmitoylation of the KChIP auxiliary subunits controls plasma membrane localization of their associated channels.  相似文献   

6.
Voltage-gated potassium (Kv) channel subtypes localize to the plasma membrane of a number of cell types, and the sarcolemma in myocytes. Because many signaling molecules concentrate in subdomains of the plasma membrane, the localization of Kv channels to these sites may have important implications for channel function and regulation. In this study, the association of the voltage-gated potassium channel Kv1.5 with a specific subtype of lipid rafts, caveolae, in rat and canine cardiac myocytes has been investigated. Interactions between caveolin-3 and beta-dystroglycan or eNOS, as well as between Kv1.5 and alpha-actinin were readily detected in co-immunoprecipitation experiments, whereas no association between Kv1.5 and caveolin-3 was evident. Wide-field microscopy and deconvolution techniques revealed that the percent co-localization of Kv1.5 with caveolin-3 was extremely low in atrial myocytes from rat and canine hearts (8+/-1% and 12.2+/-2%, respectively), and limited in ventricular myocytes (11+/-4% and 20+/-3% in rat and canine, respectively). Immunoelectron microscopic imaging of rat atrial and ventricular tissues showed that Kv1.5 and caveolin-3 labeling generally did not overlap. In HEK293 cells stably expressing the channel, Kv1.5 did not target to the low buoyant density raft fraction along with flotillin but instead fractionated along with the non-raft associated transferrin receptor. Taken together, these results suggest that Kv1.5 is not present in caveolae of rat and canine heart.  相似文献   

7.
Kv1.3 activity is determined by raft association. In addition to Kv1.3, leukocytes also express Kv1.5, and both channels control physiological responses. Because the oligomeric composition may modify the channel targeting to the membrane, we investigated heterotetrameric Kv1.3/Kv1.5 channel traffic and targeting in HEK cells. Kv1.3 and Kv1.5 generate multiple heterotetramers with differential surface expression according to the subunit composition. FRET analysis and pharmacology confirm the presence of functional hybrid channels. Raft association was evaluated by cholesterol depletion, caveolae colocalization, and lateral diffusion at the cell surface. Immunoprecipitation showed that both Kv1.3 and heteromeric channels associate with caveolar raft domains. However, homomeric Kv1.3 channels showed higher association with caveolin traffic. Moreover, FRAP analysis revealed higher mobility for hybrid Kv1.3/Kv1.5 than Kv1.3 homotetramers, suggesting that heteromers target to distinct surface microdomains. Studies with lipopolysaccharide-activated macrophages further supported that different physiological mechanisms govern Kv1.3 and Kv1.5 targeting to rafts. Our results implicate the traffic and localization of Kv1.3/Kv1.5 heteromers in the complex regulation of immune system cells.  相似文献   

8.
《Biophysical journal》2022,121(5):755-768
Ion channels are well known for their ability to regulate the cell membrane potential. However, many ion channels also have functions that do not involve ion conductance. Kv2 channels are one family of ion channels whose non-conducting functions are central to mammalian cell physiology. Kv2.1 and Kv2.2 channels form stable contact sites between the endoplasmic reticulum and plasma membrane via an interaction with endoplasmic reticulum resident proteins. To perform this structural role, Kv2 channels are expressed at extremely high densities on the plasma membranes of many cell types, including central pyramidal neurons, α-motoneurons, and smooth muscle cells. Research from our lab and others has shown that the majority of these plasma membrane Kv2.1 channels do not conduct potassium in response to depolarization. The mechanism of this channel silencing is unknown but is thought to be dependent on channel density in the membrane. Furthermore, the prevalence of a non-conducting population of Kv2.2 channels has not been directly tested. In this work we make improved measurements of the numbers of conducting and non-conducting Kv2.1 channels expressed in HEK293 cells and expand the investigation of non-conducting channels to three additional Kv α-subunits: Kv2.2, Kv1.4, and Kv1.5. By comparing the numbers of gating and conducting channels in individual HEK293 cells, we found that on average, only 50% of both Kv2.1 and Kv2.2 channels conducted potassium and, as previously suggested, that fraction decreased with increased channel density in the plasma membrane. At the highest spatial densities tested, which are comparable with those found at Kv2 clusters in situ, only 20% of Kv2.1 and Kv2.2 channels conducted potassium. We also show for the first time that Kv1.4 and Kv1.5 exhibit density-dependent silencing, suggesting that this phenomenon has an underlying mechanism that is shared by Kv channels from multiple families.  相似文献   

9.
The voltage-gated potassium channel, Kv1.3, plays an important role in regulating membrane excitability in diverse cell types ranging from T-lymphocytes to neurons. In the present study, we test the hypothesis that the C-terminal PDZ binding domain modulates the function and localization of Kv1.3. We created a mutant form of Kv1.3 that lacked the last three amino acids of the C-terminal PDZ-binding domain (Kv1.3ΔTDV). This form of Kv1.3 did not bind the PDZ domain containing protein, PSD95. We transfected wild type and mutant Kv1.3 into HEK293 cells and determined if the mutation affected current, Golgi localization, and surface expression of the channel. We found that cells transfected with Kv1.3ΔTDV had greater current and lower Golgi localization than those transfected with Kv1.3. Truncation of the C-terminal PDZ domain did not affect surface expression of Kv1.3. These findings suggest that PDZ-dependent interactions affect both Kv1.3 localization and function. The finding that current and Golgi localization changed without a corresponding change in surface expression suggests that PDZ interactions affect localization and function via independent mechanisms.  相似文献   

10.
Caveolin-1 is a palmitoylated protein involved in the formation of plasma membrane subdomains termed caveolae, intracellular cholesterol transport, and assembly and regulation of signaling molecules in caveolae. Caveolin-1 interacts via a consensus binding motif with several signaling proteins, including H-Ras. Ras oncogene products function as molecular switches in several signal transduction pathways regulating cell growth and differentiation. Post-translational modifications, including palmitoylation, are critical for the membrane targeting and function of H-Ras. Subcellular localization regulates the signaling pathways engaged by H-Ras activation. We show here that H-Ras is localized at the plasma membrane in caveolin-1-expressing cells but not in caveolin-1-deficient cells. Since palmitoylation is required for trafficking of H-Ras from the endomembrane system to the plasma membrane, we tested whether the altered localization of H-Ras in caveolin-1-null cells is due to decreased H-Ras palmitoylation. Although the palmitoylation profiles of cultured embryo fibroblasts isolated from wild type and caveolin-1 gene-disrupted mice differed, suggesting that caveolin-1, or caveolae, play a role in the palmitate incorporation of a subset of palmitoylated proteins, the palmitoylation of H-Ras was not decreased in caveolin-1-null cells. We conclude that the altered localization of H-Ras in caveolin-1-deficient cells is palmitoylation-independent. This article shows two important new mechanisms by which loss of caveolin-1 expression may perturb intracellular signaling, namely the mislocalization of signaling proteins and alterations in protein palmitoylation.  相似文献   

11.
Caveolin-1 is a palmitoylated protein involved in the formation of plasma membrane subdomains termed caveolae, intracellular cholesterol transport, and assembly and regulation of signaling molecules in caveolae. Caveolin-1 interacts via a consensus binding motif with several signaling proteins, including H-Ras. Ras oncogene products function as molecular switches in several signal transduction pathways regulating cell growth and differentiation. Post-translational modifications, including palmitoylation, are critical for the membrane targeting and function of H-Ras. Subcellular localization regulates the signaling pathways engaged by H-Ras activation. We show here that H-Ras is localized at the plasma membrane in caveolin-1-expressing cells but not in caveolin-1-deficient cells. Since palmitoylation is required for trafficking of H-Ras from the endomembrane system to the plasma membrane, we tested whether the altered localization of H-Ras in caveolin-1-null cells is due to decreased H-Ras palmitoylation. Although the palmitoylation profiles of cultured embryo fibroblasts isolated from wild type and caveolin-1 gene-disrupted mice differed, suggesting that caveolin-1, or caveolae, play a role in the palmitate incorporation of a subset of palmitoylated proteins, the palmitoylation of H-Ras was not decreased in caveolin-1-null cells. We conclude that the altered localization of H-Ras in caveolin-1-deficient cells is palmitoylation-independent. This article shows two important new mechanisms by which loss of caveolin-1 expression may perturb intracellular signaling, namely the mislocalization of signaling proteins and alterations in protein palmitoylation.  相似文献   

12.
Surface expression of voltage-dependent K(+) channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5-containing channels target to lipid rafts. While in transfected HEK-293 cells, homo- and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non-raft microdomains. However, LPS-induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low-buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3(DGV)-mutant confined Kv1.5 to Cav3(DGV)-vesicles of HEK cells. Contrarily, coexpression of Kvbeta2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts.  相似文献   

13.
Palmitoylation of the Wnt and Hedgehog proteins is critical for maintaining their physiological functions. To date, there are no reported studies that characterize the cellular distribution of the palmitoylated forms of these proteins. Here, we describe the subcellular localization of palmitoylated Wnt and Sonic Hedgehog by using a highly sensitive and non-radioactive labeling method that utilizes alkynyl palmitic acid. We show that palmitoylated Wnt and Sonic Hedgehog localize to cellular membrane fractions only, highlighting a role for palmitoylation in the membrane association of these proteins. The method described herein has the utility to validate inhibitors of Wnt and Hedgehog acyltransferases in drug discovery, and enables further investigations of the role of palmitoylation in the secretion and signaling of these proteins.  相似文献   

14.
A well known function of palmitoylation is to promote protein binding to cell membranes. Until recently, it was unclear what additional roles, if any, palmitoylation has in controlling protein localization in cells. Recent studies of palmitoylated forms of the small GTPase Ras have now revealed that palmitoylation plays multiple roles in the regulation of protein trafficking, including targeting proteins into the secretory pathway and recycling proteins between the plasma membrane and Golgi complex. We here describe how quantitative fluorescence microscopy and photobleaching approaches can be used to study the intracellular targeting and trafficking of GFP-tagged palmitoylated proteins in living cells. We discuss (1) general considerations for fluorescence recovery after photobleaching (FRAP) measurements of GFP-tagged proteins; (2) FRAP-based assays to test the strength of binding of palmitoylated proteins to cell membranes; (3) methods to establish the kinetics and mechanisms of recycling of palmitoylated proteins between the Golgi complex and the plasma membrane; (4) the use of the palmitoylation inhibitor 2-bromo-palmitate as a tool to study the dynamic regulation of protein targeting and trafficking by palmitate turnover.  相似文献   

15.
Ye H  Ma WL  Yang ML  Liu SY  Wang DX 《生理学报》2004,56(5):573-578
复制大鼠的慢性吸烟模型,采用气道反应性的测定、HE染色、免疫组织化学染色、原位杂交和免疫印迹实验等方法,观察吸烟对大鼠支气管平滑肌大电导的钙激活的钾通道(BKca)和电压依赖性延迟整流钾通道Kv1.5蛋白和mRNA表达的影响,以阐明吸烟引起的气道高反应性发病机制中钾通道表达变化的作用。结果显示:(1)慢性吸烟可降低大鼠大气道和小气道BKca和Kv1.5蛋白和mRNA表达;(2)大气道BKca的降低程度大于Kv1.5,小气道BKca和Kv1.5的降低程度无明显差异:(3)吸烟对全肺组织BKca和Kv1.5的蛋白表达无明显影响。上述结果提示,慢性吸烟可下调大鼠气道平滑肌钾通道BKca和Kv1.5的表达水平,是导致气道高反应的机制之一。  相似文献   

16.
A novel nortriterpene, termed correolide, purified from the tree Spachea correae, inhibits Kv1.3, a Shaker-type delayed rectifier potassium channel present in human T lymphocytes. Correolide inhibits 86Rb+ efflux through Kv1.3 channels expressed in CHO cells (IC50 86 nM; Hill coefficient 1) and displays a defined structure-activity relationship. Potency in this assay increases with preincubation time and with time after channel opening. Correolide displays marked selectivity against numerous receptors and voltage- and ligand-gated ion channels. Although correolide is most potent as a Kv1.3 inhibitor, it blocks all other members of the Kv1 family with 4-14-fold lower potency. C20-29-[3H]dihydrocorreolide (diTC) was prepared and shown to bind in a specific, saturable, and reversible fashion (Kd = 11 nM) to a single class of sites in membranes prepared from CHO/Kv1.3 cells. The molecular pharmacology and stoichiometry of this binding reaction suggest that one diTC site is present per Kv1.3 channel tetramer. This site is allosterically coupled to peptide and potassium binding sites in the pore of the channel. DiTC binding to human brain synaptic membranes identifies channels composed of other Kv1 family members. Correolide depolarizes human T cells to the same extent as peptidyl inhibitors of Kv1.3, suggesting that it is a candidate for development as an immunosuppressant. Correolide is the first potent, small molecule inhibitor of Kv1 series channels to be identified from a natural product source and will be useful as a probe for studying potassium channel structure and the physiological role of such channels in target tissues of interest.  相似文献   

17.
The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. An imbalance in the ratio of inward and outward conducting channels is unfavorable and often detrimental. For example, over- or underexpression of voltage-gated K+ (Kv) channels can be cytotoxic and in some cases lead to disease. In this study, we demonstrated a novel role for S-acylation in Kv1.5 cell surface expression. In transfected fibroblasts, biochemical evidence showed that Kv1.5 is posttranslationally modified on both the NH2 and COOH termini via hydroxylamine-sensitive thioester bonds. Pharmacological inhibition of S-acylation, but not myristoylation, significantly decreased Kv1.5 expression and resulted in accumulation of channel protein in intracellular compartments and targeting for degradation. Channel protein degradation was rescued by treatment with proteasome inhibitors. Time course experiments revealed that S-acylation occurred in the biosynthetic pathway of nascent channel protein and showed that newly synthesized Kv1.5 protein, but not protein expressed on the cell surface, is sensitive to inhibitors of thioacylation. Sensitivity to inhibitors of S-acylation was governed by COOH-terminal, but not NH2-terminal, cysteines. Surprisingly, although intracellular cysteines were required for S-acylation, mutation of these residues resulted in an increase in Kv1.5 cell surface channel expression, suggesting that screening of free cysteines by fatty acylation is an important regulatory step in the quality control pathway. Together, these results show that S-acylation can regulate steady-state expression of Kv1.5. quality control; potassium; channels; palmitoylation; posttranslational  相似文献   

18.
Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1–50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC50 of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting that extracellular potassium stabilizes an inactivated state in Kv7.1 channels. The effect of extracellular potassium was absent in noninactivating Kv7.1/KCNE1 and Kv7.1/KCNE3 channels, further supporting a stabilized inactivated state as the underlying mechanism. Interestingly, coexpression of Kv7.1 with KCNE2 did not attenuate the inhibition by potassium. In a number of other Kv channels, including Kv1.5, Kv4.3, and Kv7.2–5 channels, currents were only minimally reduced by an increase in extracellular potassium as expected. These results show that extracellular potassium modulates Kv7.1 channels and suggests that physiological changes in potassium concentrations may directly control the function of Kv7.1 channels. This may represent a novel regulatory mechanism of excitability and of potassium transport in tissues expressing Kv7.1 channels.  相似文献   

19.
The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K+ current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4–2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems.  相似文献   

20.
Voltage-gated Kv1 channels are key factors regulating excitability in the mammalian central nervous system. Diverse posttranslational regulatory mechanisms operate to determine the density, subunit composition, and localization of Kv1 channel complexes in the neuronal plasma membrane. In this study, we investigated the role of the endoplasmic reticulum chaperone calnexin in the intracellular trafficking of Kv1 channels. We found that coexpressing calnexin with the Kv1.2alpha subunit in transfected mammalian COS-1 cells produced a dramatic dose-dependent increase in cell surface Kv1.2 channel complexes. In calnexin-transfected COS-1 cells, the proportion of Kv1.2 channels with mature N-linked oligosaccharide chains was comparable to that observed in neurons. In contrast, calnexin coexpression exerted no effects on trafficking of the intracellularly retained Kv1.1 or Kv1.6alpha subunits. We also found that calnexin and auxiliary Kvbeta2 subunit coexpression was epistatic, suggesting that they share a common pathway for promoting Kv1.2 channel surface expression. These results provide yet another component in the elaborate repertoire of determinants regulating the density of Kv1 channels in the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号