首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Touch differs from other exteroceptive senses in that the body itself forms part of the tactile percept. Interactions between proprioception and touch provide a powerful way to investigate the implicit body representation underlying touch. Here, we demonstrate that an intrinsic primary quality of a tactile object, for example its size, is directly affected by the perceived size of the body part touching it. We elicited proprioceptive illusions that the left index finger was either elongating or shrinking by vibrating the biceps or triceps tendon of the right arm while subjects grasped the tip of their left index finger. Subjects estimated the distance between two simultaneous tactile contacts on the left finger during tendon vibration. We found that tactile distances feel bigger when the touched body part feels elongated. Control tests showed that the modulation of touch was linked to the perceived index-finger size induced by tendon vibration. Vibrations that did not produce proprioceptive illusion had no effect on touch. Our results show that the perception of tactile objects is referenced to an implicit body representation and that proprioception contributes to this body representation. We also provide, for the first time, a quantitative, implicit measure of distortions of body size.  相似文献   

4.
Studies show that while the cortical mechanisms of two-dimensional (2D) form and motion processing are similar in touch and vision, the mechanisms of three-dimensional (3D) shape processing are different. 2D form and motion are processed in areas 3b and 1 of SI cortex by neurons with receptive fields (RFs) composed of excitatory and inhibitory subregions. 3D shape is processed in area 2 and SII and relies on the integration of cutaneous and proprioceptive inputs. The RFs of SII neurons vary in size and shape with heterogeneous structures consisting of orientation-tuned fingerpads mixed with untuned excitatory or inhibitory fingerpads. Furthermore, the sensitivity of the neurons to cutaneous inputs changes with hand conformation. We hypothesize that these RFs are the kernels underlying tactile object recognition.  相似文献   

5.
Tactile perception is typically considered the result of cortical interpretation of afferent signals from a network of mechanical sensors underneath the skin. Yet, tactile illusion studies suggest that tactile perception can be elicited without afferent signals from mechanoceptors. Therefore, the extent that tactile perception arises from isomorphic mapping of tactile afferents onto the somatosensory cortex remains controversial. We tested whether isomorphic mapping of tactile afferent fibers onto the cortex leads directly to tactile perception by examining whether it is independent from proprioceptive input by evaluating the impact of different hand postures on the perception of a tactile illusion across fingertips. Using the Cutaneous Rabbit Effect, a well studied illusion evoking the perception that a stimulus occurs at a location where none has been delivered, we found that hand posture has a significant effect on the perception of the illusion across the fingertips. This finding emphasizes that tactile perception arises from integration of perceived mechanical and proprioceptive input and not purely from tactile interaction with the external environment.  相似文献   

6.
7.
8.
Researchers have known for more than a century that crossing the hands can impair both tactile perception and the execution of appropriate finger movements. Sighted people find it more difficult to judge the temporal order when two tactile stimuli, one applied to either hand, are presented and their hands are crossed over the midline as compared to when they adopt a more typical uncrossed-hands posture. It has been argued that because of the dominant role of vision in motor planning and execution, tactile stimuli are remapped into externally defined coordinates (predominantly determined by visual inputs) that takes longer to achieve when external and body-centered codes (determined primarily by somatosensory/proprioceptive inputs) are in conflict and that involves both multisensory parietal and visual cortex. Here, we show that the performance of late, but not of congenitally, blind people was impaired by crossing the hands. Moreover, we provide the first empirical evidence for superior temporal order judgments (TOJs) for tactile stimuli in the congenitally blind. These findings suggest a critical role of childhood vision in modulating the perception of touch that may arise from the emergence of specific crossmodal links during development.  相似文献   

9.
When saccading to a silent clock, observers sometimes think that the second hand has paused momentarily. This effect has been termed chronostasis and occurs because observers overestimate the time that they have seen the object of an eye movement. They seem to extrapolate its appearance back to just prior to the onset of the saccade rather than the time that it is actually fixated on the retina. Here, we describe a similar effect following an arm movement: subjects overestimate the time that their hand has been in contact with a newly touched object. The illusion's magnitude suggests backward extrapolation of tactile perception to a moment during the preceding reach. The illusion does not occur if the arm movement triggers a change in a continuously visible visual target: the time of onset of the change is estimated correctly. We hypothesize that chronostasis-like effects occur when movement produces uncertainty about the onset of a sensory event. Under these circumstances, the time at which neurons with receptive fields that shift in the temporal vicinity of a movement change their mappings may be used as a time marker for the onset of perceptual properties that are only established later.  相似文献   

10.
Structural and functional substrates of orientation processing in monkeys have been clarified. However, orientation perception in monkeys has not been fully studied. In this study, the cognitive mechanism that controls monkeys' perception of orientation was evaluated. After the monkeys were trained to discriminate between a cardinal and an oblique orientation (e.g., 0 degrees and 30 degrees), their perceptual mechanisms underlying orientation discrimination were tested by using six orientations, ranging from 0 degrees to 150 degrees, including ones used in the discrimination training. Generalization tests showed that the monkeys who were trained with cardinal orientations (e.g., 0 degrees) as positive stimuli generalized their responses to the other cardinal orientation (e.g., 90 degrees). Similarly, the monkeys who were trained with oblique orientations (e.g., 30 degrees) as positive stimuli generalized their responses to all other oblique orientations (e.g., 60 degrees, 120 degrees, and 150 degrees). These findings indicated that the monkeys abstracted the quality of the cardinal/oblique category from the physical features of orientation stimuli although they were not trained to do so. Such an abstraction also suggested a discrepancy between a continuously and orderly arranged cortical map and a discontinuously categorized perception of orientation. The present findings provide insight into the learning-correlated plasticity of cortical orientation preference.  相似文献   

11.
The experiment reported here investigates the perception of orientation of color photographic images. A collection of 1000 images (mix of professional photos and consumer snapshots) was used in this study. Each image was examined by at least five observers and shown at varying resolutions. At each resolution, observers were asked to indicate the image orientation, the level of confidence, and the cues they used to make the decision. The results show that for typical images, accuracy is close to 98% when using all available semantic cues from high-resolution images, and 84% when using only low-level vision features and coarse semantics from thumbnails. The accuracy by human observers suggests an upper bound for the performance of an automatic system. In addition, the use of a large, carefully chosen image set that spans the 'photo space' (in terms of occasions and subject matter) and extensive interaction with the human observers reveals cues used by humans at various image resolutions: sky and people are the most useful and reliable among a number of important semantic cues.  相似文献   

12.
13.
14.
Circadian rhythms are regulated by clocks located in specific structures of the central nervous system, such as the suprachiasmatic nucleus (SCN) in mammals, and by peripheral oscillators present in various other tissues. Recent discoveries have elucidated the control of central and peripheral clocks by environmental signals. The major synchroniser in animals is light. In mammals, a subset of retinal ganglion cells receive light signals that are transmitted to the SCN via the retinohypothalamic tract. Photoreception is probably elicited by a novel opsin, melanopsin, although cryptochromes may also play a role. These signals feed directly to the SCN master clock, which then provides timing cues to peripheral clocks. In contrast to mammals, peripheral tissues in the fly and in the fish are directly photoreceptive. However, alternative routes exist. Some peripheral clocks in mammals can be specifically entrained in an SCN-independent manner by restricting food during the light period.  相似文献   

15.
Population coding of stimulus orientation by striate cortical cells   总被引:3,自引:1,他引:3  
I have examined the performance of a population coding model of visual orientation discrimination, similar to the population coding models proposed for the coding of limb movements. The orientation of the stimulus is not represented by a single unit but by an ensemble of broadly tuned units in a distributed way. Each unit is represented by a vector whose magnitude and direction correspond to the response magnitude and preferred orientation of the unit, respectively. The orientation of the population vector, i.e. the vector sum of the ensemble of units, is the signalled orientation on a particular trial. The accuracy of this population vector orientation coding was determined as a function of a number of parameters by computer simulation. I have shown that even with broadly orientation tuned units possessing considerable response variance, the accuracy of the orientation of the population vector can be as good as behaviorally measured just noticeable differences in orientation. The accuracy of the population code is shown to depend upon the number of units, the average response strength, the orientation bandwidth, response variability and the response covariance. The results of these simulations were also compared to predictions derived from psychophysical studies of orientation discrimination.  相似文献   

16.
Although robots are becoming an ever-growing presence in society, we do not hold the same expectations for robots as we do for humans, nor do we treat them the same. As such, the ability to recognize cues to human animacy is fundamental for guiding social interactions. We review literature that demonstrates cortical networks associated with person perception, action observation and mentalizing are sensitive to human animacy information. In addition, we show that most prior research has explored stimulus properties of artificial agents (humanness of appearance or motion), with less investigation into knowledge cues (whether an agent is believed to have human or artificial origins). Therefore, currently little is known about the relationship between stimulus and knowledge cues to human animacy in terms of cognitive and brain mechanisms. Using fMRI, an elaborate belief manipulation, and human and robot avatars, we found that knowledge cues to human animacy modulate engagement of person perception and mentalizing networks, while stimulus cues to human animacy had less impact on social brain networks. These findings demonstrate that self–other similarities are not only grounded in physical features but are also shaped by prior knowledge. More broadly, as artificial agents fulfil increasingly social roles, a challenge for roboticists will be to manage the impact of pre-conceived beliefs while optimizing human-like design.  相似文献   

17.
18.
A mathematical model of neuronal target structure with spatial anisotropy of lateral inhibition is discussed. The positions of the neuronal target to oriented sensory stimuli are investigated by computer simulation. It is suggested that visual stimuli orientation is coded in the late phase of dynamic responses of cortical neurons. This idea is in agreement with the data obtained in experiments on guinea pig visual cortex neurons.  相似文献   

19.
20.
The searching behavior of blinded cockroaches was examined under unrestrained conditions, in an arena, and on a treadmill. When cockroaches searching in a circular arena touched a stationary object (metal pole) with their antennae, they frequently approached the object more closely, and then climbed up it. Similar orientation behavior was observed in tethered animals in open loop conditions, walking on a Styrofoam ball. In these restrained cockroaches, a single antenna sufficed to distinguish the angular positions of an object, in the horizontal plane (0 degrees, 45 degrees, and 90 degrees). A group of mechanosensitive hairs on the basal segment of the antenna (scapal hair plate) appears to play a major role in antennal object detection in the horizontal plane, as gauged by shaving off these scapal hair plates. In unrestrained cockroaches, shaving the scapal hair plate increased the time needed to approach an object. Under tethered conditions, the ability to turn towards and to establish antennal contact with a test object was significantly impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号