首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chikungunya virus nsP2 replication protein is a cysteine protease, which cleaves the nonstructural nsP1234 polyprotein into functional replication components. The cleavage and processing of nsP1234 by nsP2 protease is essential for the replication and proliferation of the virus. Thus, ChikV nsP2 protease is a promising target for antiviral drug discovery. In this study, the crystal structure of the C-terminal domain of ChikV nsP2 protease (PDB ID: 4ZTB) was used for structure based identification and rational designing of peptidomimetic inhibitors against nsP2 protease. The interactions of the junction residues of nsP3/4 polyprotein in the active site of nsP2 protease have been mimicked to identify and design potential inhibitory molecules. Molecular docking of the nsP3/4 junction peptide in the active site of ChikV nsP2 protease provided the structural insight of the probable binding mode of nsP3/4 peptide and pigeonholed the molecular interactions critical for the substrate binding. Further, the shape and pharmacophoric properties of the viral nsP3/4 substrate peptide were taken into consideration and the mimetic molecules were identified and designed. The designed mimetic compounds were then analyzed by docking and their binding affinity was assessed by molecular dynamics simulations.  相似文献   

2.
HCV infection in more than 200 million individuals worldwide is a principal health problem. Prior to the development of HCV protease inhibitor combination therapy, HCV infected patients were treated with pegylated interferon-α and ribavirin. The adverse side effects associated with this type of treatment may lead to the discontinuation of treatment in certain number of patients. Currently, the inhibitors of NS3/4A Protease were found promising candidates for the treatment of HCV infection. There are several inhibitors of HCV NS3/4A protease that are passing through clinical improvement showing good potency against HCV infections in a number of patients. To further recognize binding interactions and activity trend, the molecular docking studies were performed on a number of HCV NS3/4A protease ketoamide inhibitors via MOE docking protocol. The docking analysis resulted in the detection of important ligand interactions with respect to binding site of target proteinand produced good correlation coefficient (r2 = 0.690) between docking score and biological activities. These molecular docking results should, in our view, contribute for further optimization of ketoamide derivatives as NS3/4A protease inhibitors.  相似文献   

3.
4.
Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.  相似文献   

5.
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4′-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.  相似文献   

6.
Increasing resistance of malaria parasites, in particular Plasmodium falciparum, demands a serious search for novel targets. Cysteine protease in P. falciparum, encoded by a previously unidentified gene falcipain 2, provides one such target to design chemotherapeutic agents for treatment of malaria. In fact, a few cysteine protease inhibitors have been shown to inhibit growth of cultured malarial parasites. In absence of a crystal structure for this enzyme, homology modeling proved to be a reasonable alternative to study binding requirements of the enzyme. A homology model for falcipain 2 was developed and validated by docking of known vinyl sulfone inhibitors. Further, based on the observations of these studies, novel isoquinoline inhibitors were designed and synthesized, which exhibited in vitro enzyme inhibition at micromolar concentrations.  相似文献   

7.
The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CLpro. 3CLpro plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CLpro inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CLpro. Structure–activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k1 showed most potent inhibitory activity against 3CLpro (IC50 = 1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs.  相似文献   

8.
Docking ligands into an ensemble of NMR conformers is essential to structure-based drug discovery if only NMR structures are available for the target. However, sequentially docking ligands into each NMR conformer through standard single-receptor-structure docking, referred to as sequential docking, is computationally expensive for large-scale database screening because of the large number of NMR conformers involved. Recently, we developed an efficient ensemble docking algorithm to consider protein structural variations in ligand binding. The algorithm simultaneously docks ligands into an ensemble of protein structures and achieves comparable performance to sequential docking without significant increase in computational time over single-structure docking. Here, we applied this algorithm to docking with NMR structures. The HIV-1 protease was used for validation in terms of docking accuracy and virtual screening. Ensemble docking of the NMR structures identified 91% of the known inhibitors under the criterion of RMSD < 2.0 A for the best-scored conformation, higher than the average success rate of single docking of individual crystal structures (66%). In the virtual screening test, on average, ensemble docking of the NMR structures obtained higher enrichments than single-structure docking of the crystal structures. In contrast, docking of either the NMR minimized average structure or a single NMR conformer performed less satisfactorily on both binding mode prediction and virtual screening, indicating that a single NMR structure may not be suitable for docking calculations. The success of ensemble docking of the NMR structures suggests an efficient alternative method for standard single docking of crystal structures and for considering protein flexibility.  相似文献   

9.
A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein tyrosine phosphatase 1B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal structure cocrystallized with a hexapeptide. The estimated binding energies for various docking modes as well as the RMS differences between the docked compounds and the crystallographic structure were calculated. In this scenario the estimated binding energies were not predictive inasmuch as docking modes with low estimated binding energies corresponded to relatively large RMS differences when aligned with the corresponding crystal structure. Secondly, the inhibitors were docked to their parent protein structures in which they were cocrystallized. In this case, there was a good correlation between low predicted binding energy and a correct docking mode. Thirdly, to improve the predictability of the docking procedure in the general case, where only a single target protein structure is known, we evaluate an approach which takes possible protein side-chain conformational changes into account. Here, side chains exposed to the active site were considered in their allowed rotamer conformations and protein models containing all possible combinations of side-chain rotamers were generated. To evaluate which of these modeled active sites is the most likely binding site conformation for a certain inhibitor, the inhibitors were docked against all active site models. The receptor rotamer model corresponding to the lowest estimated binding energy is taken as the top candidate. Using this protocol, correct inhibitor binding modes could successfully be discriminated from proposed incorrect binding modes. Moreover, the ranking of the estimated ligand binding energies was in good agreement with experimentally observed binding affinities.  相似文献   

10.

Background

Due to dengue virus disease, half of the world population is at severe health risk. Viral encoded NS2B-NS3 protease complex causes cleavage in the nonstructural region of the viral polyprotein. The cleavage is essentially required for fully functional viral protein. It has already been reported that if function of NS2B-NS3 complex is disrupted, viral replication is inhibited. Therefore, the NS2B-NS3 is a well-characterized target for designing antiviral drug.

Results

In this study docking analysis was performed with active site of dengue NS2B-NS3 protein with selected plant flavonoids. More than 100 flavonoids were used for docking analysis. On the basis of docking results 10 flavonoids might be considered as the best inhibitors of NS2B-NS3 protein. The interaction studies showed resilient interactions between ligand and receptor atoms. Furthermore, QSAR and SAR studies were conducted on the basis of NS2B-NS3 protease complex docking results. The value of correlation coefficient (r) 0.95 shows that there was a good correlation between flavonoid structures and selected properties.

Conclusion

We hereby suggest that plant flavonoids could be used as potent inhibitors of dengue NS2B-NS3 protein and can be used as antiviral agents against dengue virus. Out of more than hundred plant flavonoids, ten flavonoid structures are presented in this study. On the basis of best docking results, QSAR and SAR studies were performed. These flavonoids can directly work as anti-dengue drug or with little modifications in their structures.
  相似文献   

11.
HCV NS3 protease domain has been one of the most attractive targets for developing new drugs for HCV infection and many drugs were successfully developed, but all of them were designed for targeting HCV genotype 1 infection. HCV genotype 4a dominant in Egypt has paid less attention. Here, we describe our protocol of virtual screening in identification of novel potential potent inhibitors for HCV NS3 of genotype 4a using homology modeling, PLIF (protein–ligand interaction fingerprint), docking, pharmacophore, and dynamic simulation. A high-quality 3D model of HCV NS3 protease of genotype 4a was constructed using crystal structure of HCV NS3 protease of genotype 1b (PDB ID: 4u01) as a template. PLIF was generated using five crystal structures of HCV NS3 (PDB ID: 4u01, 3kee, 4ktc, 4i33, and 5epn) which revealed the most important residues and their interactions with the co-crystalized ligands. A 3D pharmacophore model consisting of six features was developed from the generated PLIF data and then used as a screening filter for 11,244 compounds. Only 423 compounds passed the pharmacophore filter and entered the docking-based virtual screening stage. The highest ranked five hits from docking result (compound (C1–C5)) were selected for further analysis. They exhibited stronger interaction and higher binding affinity than HCV NS3 protease ligands. Dynamic simulation of the protein–best lead complex was performed to validate and augment the virtual screening results and it showed that these compounds have a strong binding affinity and could be very effective in treating HCV genotype 4a infections.  相似文献   

12.
Abstract

Increasing resistance of malaria parasites, in particular Plasmodiun falciparum, demands a serious search for novel targets. Cysteine protease in P. falciparum, encoded by a previously unidentified gene falcipain 2, provides one such target to design chemotherapeutic agents for treatment of malaria. In fact, a few cysteine protease inhibitors have been shown to inhibit growth of cultured malarial parasites. In absence of a crystal structure for this enzyme, homology modeling proved to be a reasonable alternative to study binding requirements of the enzyme. A homology model for falcipain 2 was developed and validated by docking of known vinyl sulfone inhibitors. Further, based on the observations of these studies, novel isoquinoline inhibitors were designed and synthesized, which exhibited in vitro enzyme inhibition at micromolar concentrations.  相似文献   

13.
HIV-1 encodes an aspartic protease, an enzyme crucial to viral maturation and infectivity. It is responsible for the cleavage of various protein precursors into viral proteins. Inhibition of this enzyme prevents the formation of mature, infective viral particles and therefore, it is a potential target for therapeutic intervention following infection. Several drugs that inhibit the action of this enzyme have been discovered. These include peptidomimetic inhibitors such as ABT-538 and saquinavir, and structure based inhibitors such as indinavir and nelfinavir. Several of these have been tested in human clinical trials and have demonstrated significant reduction in viral load. However, most of them have been found to be of limited clinical utility because of their poor pharmacological properties and also because the viral protease becomes rapidly resistant to these drugs on account of mutations in the enzyme. One way to overcome these limitations is to design an inhibitor that interacts mainly with the conserved residues of HIV-1 protease. By a rational drug design approach based on the high resolution X-ray crystal structure of the HIV-1 protease with--MVT 101 (a substrate based inhibitor) and the specific design principles of peptides containing dehydro-Alanine (delta Ala) derived from our earlier studies, we have designed a tetrapeptide with the sequence: NH2-Thr-delta Ala-delta Ala-Gln-COOH. Energy minimization and molecular modelling of the interaction of the designed tetrapeptide with the inhibitor binding site indicate that the inhibitor is in an extended conformation and makes excessive contacts with the viral enzyme at the interface between the protein subunits. The designed inhibitor has 33% of its interaction with the conserved region of HIV-1 protease which is of the same order as that of MVT 101 with the enzyme.  相似文献   

14.
15.
Mycocypins, clitocypins and macrocypins, are cysteine protease inhibitors isolated from the mushrooms Clitocybe nebularis and Macrolepiota procera. Lack of sequence homology to other families of protease inhibitors suggested that mycocypins inhibit their target cysteine protease by a unique mechanism and that a novel fold may be found. The crystal structures of the complex of clitocypin with the papain-like cysteine protease cathepsin V and of macrocypin and clitocypin alone have revealed yet another motif of binding to papain like-cysteine proteases, which in a yet unrevealed way occludes the catalytic residue. The binding is associated with a peptide-bond flip of glycine that occurs before or concurrently with the inhibitor docking. Mycocypins possess a β-trefoil fold, the hallmark of Kunitz-type inhibitors. It is a tree-like structure with two loops in the root region, a stem comprising a six-stranded β-barrel, and two layers of loops (6 + 3) in the crown region. The two loops that bind to cysteine cathepsins belong to the lower layer of the crown loops, whereas a single loop from the crown region can inhibit trypsin or asparaginyl endopeptidase, as demonstrated by site-directed mutagenesis. These loops present a versatile surface with the potential to bind to additional classes of proteases. When appropriately engineered, they could provide the basis for possible exploitation in crop protection.  相似文献   

16.
A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome. Site-specific proteolysis plays a critical role in regulating a number of cellular and viral processes. Since the main protease of SCoV, also termed 3C-like protease, is an attractive target for drug therapy, we have developed a safe, simple, and rapid genetic screen assay to monitor the activity of the SCoV 3C-like protease. This genetic system is based on the bacteriophage lambda regulatory circuit, in which the viral repressor cI is specifically cleaved to initiate the lysogenic-to-lytic switch. A specific target for the SCoV 3C-like protease, P1/P2 (SAVLQ/SGFRK), was inserted into the lambda phage cI repressor. The target specificity of the SCoV P1/P2 repressor was evaluated by coexpression of this repressor with a chemically synthesized SCoV 3C-like protease gene construct. Upon infection of Escherichia coli cells containing the two plasmids encoding the cI. SCoV P1/P2-cro and the beta-galactosidase-SCoV 3C-like protease constructs, lambda phage replicated up to 2,000-fold more efficiently than in cells that did not express the SCoV 3C-like protease. This simple and highly specific assay can be used to monitor the activity of the SCoV 3C-like protease, and it has the potential to be used for screening specific inhibitors.  相似文献   

17.
The NS3 serine protease of dengue virus is required for the maturation of the viral polyprotein and consequently represents a promising target for the development of antiviral inhibitors. However, the substrate specificity of this enzyme has been characterized only to a limited extent. In this study, we have investigated product inhibition of the NS3 protease by synthetic peptides derived from the P6-P1 and the P1'-P5' regions of the natural polyprotein substrate. N-terminal cleavage site peptides corresponding to the P6-P1 region of the polyprotein were found to act as competitive inhibitors of the enzyme with K(i) values ranging from 67 to 12 microM. The lowest K(i) value was found for the peptide representing the NS2A/NS2B cleavage site, RTSKKR. Inhibition by this cleavage site sequence was analyzed by using shorter peptides, SKKR, KKR, KR, AGRR, and GKR. With the exception of the peptide AGRR which did not inhibit the protease at a concentration of 1mM, all other peptides displayed K(i) values in the range from 188 to 22 microM. Peptides corresponding to the P1'-P5' region of the polyprotein cleavage sites had no effect on enzymatic activity at a concentration of 1mM. Molecular docking data of peptide inhibitors to a homology-based model of the dengue virus type 2 NS2B(H)-NS3p co-complex indicate that binding of the non-prime site product inhibitors is similar to ground-state binding of the corresponding substrates.  相似文献   

18.
Human rhinovirus 3C protease (HRV 3Cpro) is known to be a promising target for development of therapeutic agents against the common cold because of the importance of the protease in viral replication as well as its expression in a large number of serotypes. To explore non-peptidic inhibitors of HRV 3Cpro, a series of novel heteroaromatic esters was synthesized and evaluated for inhibitory activity against HRV 3Cpro, to determine the structure–activity relationships. The most potent inhibitor, 7, with a 5-bromopyridinyl group, had an IC50 value of 80 nM. In addition, the binding mode of a novel analog, 19, with the 4-hydroxyquinolinone moiety, was explored by molecular docking, suggesting a new interaction in the S1 pocket.  相似文献   

19.
Design, synthesis and biological evaluation of a series of 5-chloropyridine ester-derived severe acute respiratory syndrome-coronavirus chymotrypsin-like protease inhibitors is described. Position of the carboxylate functionality is critical to potency. Inhibitor 10 with a 5-chloropyridinyl ester at position 4 of the indole ring is the most potent inhibitor with a SARS-CoV 3CLpro IC(50) value of 30 nM and an antiviral EC(50) value of 6.9 microM. Molecular docking studies have provided possible binding modes of these inhibitors.  相似文献   

20.
The human immunodeficiency virus (HIV) protease is a homodimeric aspartyl protease that is crucial for the viral life-cycle, cleaving proviral polyproteins, hence creating mature protein components that are required for the formation of an infectious virus. With diagnostic measures and clinically used protease inhibitors focusing on HIV-1, due to its higher virulence and prevalence, studies of the efficacy of those inhibitors on HIV-2 protease remain widely lacking. Utilizing a wild-type HIV-2 vector backbone and cloning techniques we have developed a cassette system where the efficacy of clinically used protease inhibitors can be studied for various serotypes of HIV-2 protease both in enzymatic and cell culture assays. In our experiments, optimization of the expression protocol led to a relatively stable enzyme, for cell culture assays, the efficiency of transfection and transduction capability of the modified vector was tested and was not found to differ from that of the wild-type, moreover, a 2nd generation protease inhibitor was used to demonstrate the usefulness of the system. The combination of assays performed with our cassette system is expected to provide an accurate measure of the efficacy of currently used; as well as experimental protease inhibitors on HIV-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号