首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expression of beta-galactosidase encoded by the nrg-29::Tn917-lacZ insertion increases 4,000-fold during nitrogen-limited growth (M.R. Atkinson and S. H. Fisher, J. Bacteriol. 173:23-27, 1991). The chromosomal DNA adjacent to the nrg-29::Tn917-lacZ insertion was cloned and sequenced. Analysis of the resulting nucleotide sequence revealed that the Tn917-lacZ transposon was inserted into the first gene of a dicistronic operon, nrgAB. The nrgA gene encodes a 43-kDa hydrophobic protein that is likely to be an integral membrane protein. The nrgB gene encodes a 13-kDa protein that has significant sequence similarity with the Escherichia coli glnB-encoded PII protein. Primer extension analysis revealed that the nrgAB operon is transcribed from a single promoter. The nucleotide sequence of this promoter has significant similarity with the -10 region, but not the -35 region, of the consensus sequence for Bacillus subtilis sigma A-dependent promoters.  相似文献   

3.
4.
5.
6.
7.
The nac (nitrogen assimilation control) gene from Klebsiella aerogenes, cloned in a low-copy-number cloning vector, restored the ability of K. aerogenes nac mutants to activate histidase and repress glutamate dehydrogenase formation in response to nitrogen limitation and to limit the maximum expression of the nac promoter. When present in Salmonella typhimurium, the K. aerogenes nac gene allowed the hut genes to be activated during nitrogen-limited growth. Thus, the nac gene encodes a cytoplasmic factor required for activation of hut expression in S. typhimurium during nitrogen-limited growth.  相似文献   

8.
9.
10.
11.
12.
Regulation of glutamine synthetase in Streptomyces coelicolor.   总被引:13,自引:10,他引:3       下载免费PDF全文
  相似文献   

13.
Nitrogen metabolism genes of Bacillus subtilis are regulated by the availability of rapidly metabolizable nitrogen sources, but not by any mechanism analogous to the two-component Ntr regulatory system found in enteric bacteria. Instead, at least three regulatory proteins independently control the expression of gene products involved in nitrogen metabolism in response to nutrient availability. Genes expressed at high levels during nitrogen-limited growth are controlled by two related proteins, GlnR and TnrA, which bind to similar DNA sequences under different nutritional conditions. The TnrA protein is active only during nitrogen limitation, whereas GlnR-dependent repression occurs in cells growing with excess nitrogen. Although the nitrogen signal regulating the activity of the GlnR and TnrA proteins is not known, the wild-type glutamine synthetase protein is required for the transduction of this signal to the GlnR and TnrA proteins. Examination of GlnR- and TnrA-regulated gene expression suggests that these proteins allow the cell to adapt to growth during nitrogen-limited conditions. A third regulatory protein, CodY, controls the expression of several genes involved in nitrogen metabolism, competence and acetate metabolism in response to growth rate. The highest levels of CodY-dependent repression occur in cells growing rapidly in a medium rich in amino acids, and this regulation is relieved during the transition to nutrient-limited growth. While the synthesis of amino acid degradative enzymes in B. subtilis is substrate inducible, their expression is generally not regulated in response to nitrogen availability by GlnR and TnrA. This pattern of regulation may reflect the fact that the catabolism of amino acids produced by proteolysis during sporulation and germination provides the cell with substrates for energy production and macromolecular synthesis. As a result, expression of amino acid degradative enzymes may be regulated to ensure that high levels of these enzymes are present in sporulating cells and in dormant spores.  相似文献   

14.
PeaT1是从极细链格孢菌Alternaria tenuissima中分离的一种蛋白激发子,具有促进植物生长和诱导植物产生系统获得抗性的功能,为了实现peaT1基因在枯草芽胞杆菌Bacillus subtilis中的分泌表达,增加其应用途径,从枯草芽胞杆菌基因组DNA中分别扩增获得P43启动子和nprB基因的信号肽序列,并用SOE (Splicing by over lapping extension) 方法与peaT1基因连接,将连接产物克隆到大肠杆菌-枯草芽胞杆菌穿梭表达载体pHY300-PLK上,构建了重组表达载体pHY43N-peaT1。将重组载体转化枯草芽胞杆菌WB800菌株,SDS-PAGE和Western blotting分析证实,在NprB信号肽的引导下,枯草芽胞杆菌成功分泌表达了PeaT1蛋白。构建的重组菌株能够显著增强幼苗抗旱性,提高小麦株高。  相似文献   

15.
16.
17.
By using a DNA fragment of Escherichia coli ffh as a probe, the Bacillus subtilis ffh gene was cloned. The complete nucleotide sequence of the cloned DNA revealed that it contained three open reading frames (ORFs). Their order in the region, given by the gene product, was suggested to be ORF1-Ffh-S16, according to their similarity to the gene products of E. coli, although ORF1 exhibited no significant identity with any other known proteins. The orf1 and ffh genes are organized into an operon. Genetic mapping of the ffh locus showed that the B. subtilis ffh gene is located near the pyr locus on the chromosome. The gene product of B. subtilis ffh shared 53.9 and 32.6% amino acid identity with E. coli Ffh and the canine 54-kDa subunit of signal recognition particle, respectively. Although there was low amino acid identity with the 54-kDa subunit of mammalian signal recognition particle, three GTP-binding motifs in the NH2-terminal half and amphipathic helical cores in the COOH-terminus were conserved. The depletion of ffh in B. subtilis led to growth arrest and drastic morphological changes. Furthermore, the translocation of beta-lactamase and alpha-amylase under the depleted condition was also defective.  相似文献   

18.
19.
Solomon PS  Oliver RP 《Planta》2002,214(3):414-420
The growth of the biotrophic pathogen Cladosporium fulvum within the tomato (Lycopersicon esculentum Mill.) leaf is restricted to the intercellular space. Previous studies from this laboratory have demonstrated that gamma-aminobutyric acid (GABA) accumulates to millimolar concentrations in the apoplast during a compatible interaction. We decided to further investigate the role of GABA during infection. A gene encoding a required enzyme for GABA metabolism, GABA transaminase (Gat1), was cloned and sequenced from C. fulvum. The predicted protein sequence of Gat1 had high homology to other fungal GABA transaminases, particularly from Aspergillus nidulans. In vitro expression experiments revealed Gat1 to be strongly expressed during fungal growth on both GABA and glutamate whereas nearly no expression was evident during nitrogen starvation conditions. Expression of Gat1 was also apparent during infection, suggesting for the first time that C. fulvum actively metabolises GABA during infection. This indicates that the fungus may be utilising the GABA in the apoplast as a nutrient source. Further analysis revealed that the expression of tomato glutamate decarboxylase, the enzyme responsible for GABA synthesis, appeared appreciably higher during a compatible interaction than in the incompatible interaction. These findings imply that the infecting fungus may alter the physiology of the tomato leaf with the result that a source of nitrogen is supplied.  相似文献   

20.
rRNA promoters from the rrnB locus of Bacillus subtilis and from the rrnB locus of Escherichia coli were fused to the gene for chloramphenicol acetyltransferase (CAT). The level of expression of CAT in E. coli showed growth rate dependence when the CAT gene was linked to either E. coli or B. subtilis tandem promoters. The downstream promoter of the tandem Bacillus pair showed growth rate regulation, while the upstream promoter did not, whereas for the E. coli tandem promoters, only the upstream promoter was growth rate regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号