首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. CFW mice were fed either on control diet or on iron-deficient diet. 2. After 5 months the mice were infected with CL, Y or YuYu strain of Trypanosoma cruzi. 3. On the fifth day after the infection, the mice on control diet were divided in three groups: one group remained as controls, two groups were injected either with desferrioxamine or iron-dextran. 4. The severity of the disease was evaluated by parasitemia and mortality. 5. The experimental groups were compared with the infected group fed on the control diet. 6. In mice fed on the iron-deficient diet, the disease was more severe for CL strain and less severe for Y and YuYu strains. 7. Treatment with desferrioxamine produced a less severe disease with YuYu strain and no difference with the other strains. 8. On Treatment with iron-dextran, the disease became more severe with Y and CL strains; no effect was observed with YuYu strain. 9. These findings may be due to intraspecific differences among the strains.  相似文献   

2.
Role of glutathione in the susceptibility of Trypanosoma cruzi to drugs   总被引:1,自引:0,他引:1  
1. Glutathione (G-SH) concentration, gamma-glutamyltranspeptidase and glutathione S-transferase activities were studied in several strains of T. cruzi epimastigotes. GSH varied from 1.04 mM for the LQ strain to 0.61 mM for the Tulahuen strain. 2. Cultures of the LQ strain presented more resistance to drugs than those of the Tulahuen. It was necessary a concentration of nifurtimox 4 times higher and one of benznidazole 10 times higher in order to inhibit approximately to 50% the growth of LQ strain cultures when compared with the Tulahuen strain. 3. Buthionine sulfoximine decreased the concentration of glutathione to about 50% in the LQ and Tulahuen strains and potentiated the toxicity of nifurtimox and benznidazole in T. cruzi epimastigote cultures. These results suggest that glutathione is an important factor in the resistance of T. cruzi to nifurtimox and benznidazole.  相似文献   

3.
Trypanosoma cruzi: shedding of surface antigens as membrane vesicles   总被引:3,自引:0,他引:3  
Tissue culture-derived trypomastigotes from Trypanosoma cruzi spontaneously shed surface antigens into the culture medium. The shedding is a temperature- and time-dependent phenomenon and is independent of the presence of proteins or immune serum in the medium. The analysis of this process in four strains (Y, YuYu, CA1, and RA) showed differences in the amounts of polypeptides released. However, for all strains the liberation of the entire set of surface polypeptides ranging in molecular mass from 70 to 150 kDa was observed. Biochemical and electron microscopic data strongly suggest that most of the surface antigens are released as plasma membrane vesicles, ranging from 20 to 80 nm in diameter.  相似文献   

4.
Biological parameters of five Trypanosoma cruzi strains from different sources were determined in order to know the laboratory behaviour of natural populations. The parameters evaluated were growth kinetics of epimastigotes, differentiation into metacyclic forms, infectivity in mammalian cells grown in vitro and parasite susceptibility to nifurtimox, benznidazole and gentian violet. Differences in transformation to metacyclic, in the percentage of infected cells as well as in the number of amastigotes per cell were observed among the strains. Regarding to pharmacological assays, Y strain was the most sensitive to the three assayed compounds. These data demonstrate the heterogeneity of natural populations of T. cruzi, the only responsible of infection in humans.  相似文献   

5.
N-allyl (NAOx) and N-propyl (NPOx) oxamates were designed as inhibitors of alpha-hydroxyacid dehydrogenase (HADH) isozyme II from Trypanosoma cruzi. The kinetic studies showed that NAOx and NPOx were competitive inhibitors of HADH-isozyme II (Ki = 72 microM, IC50 = 0.33 mM and 70 microM, IC50 = 0.32 mM, respectively). The attachment of the allylic and propylic chains to nitrogen of the competitive inhibitor oxamate (Ki = 0.91 mM, IC50 = 4.25 mM), increased 12.6 and 13-folds respectively, the affinity for T. cruzi HADH-isozyme II. NAOx and NPOx were selective inhibitors of HADH-isozyme II, because other T. cruzi dehydrogenases were not inhibited by these substances. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with these inhibitors. However, we were not able to detect any trypanocidal activity with these oxamates. When the corresponding ethyl esters of N-allyl (Et-NAOx) and N-propyl (Et-NPOx) oxamates were tested as a possible trypanocidal prodrugs, in comparison with nifurtimox and benznidazole, the expected trypanocidal effects were obtained.  相似文献   

6.
Acquisition of detailed knowledge of the structure and evolution of Trypanosoma cruzi populations is essential for control of Chagas disease. We profiled 75 strains of the parasite with five nuclear microsatellite loci, 24Salpha RNA genes, and sequence polymorphisms in the mitochondrial cytochrome oxidase subunit II gene. We also used sequences available in GenBank for the mitochondrial genes cytochrome B and NADH dehydrogenase subunit 1. A multidimensional scaling plot (MDS) based in microsatellite data divided the parasites into four clusters corresponding to T. cruzi I (MDS-cluster A), T. cruzi II (MDS-cluster C), a third group of T. cruzi strains (MDS-cluster B), and hybrid strains (MDS-cluster BH). The first two clusters matched respectively mitochondrial clades A and C, while the other two belonged to mitochondrial clade B. The 24Salpha rDNA and microsatellite profiling data were combined into multilocus genotypes that were analyzed by the haplotype reconstruction program PHASE. We identified 141 haplotypes that were clearly distributed into three haplogroups (X, Y, and Z). All strains belonging to T. cruzi I (MDS-cluster A) were Z/Z, the T. cruzi II strains (MDS-cluster C) were Y/Y, and those belonging to MDS-cluster B (unclassified T. cruzi) had X/X haplogroup genotypes. The strains grouped in the MDS-cluster BH were X/Y, confirming their hybrid character. Based on these results we propose the following minimal scenario for T. cruzi evolution. In a distant past there were at a minimum three ancestral lineages that we may call, respectively, T. cruzi I, T. cruzi II, and T. cruzi III. At least two hybridization events involving T. cruzi II and T. cruzi III produced evolutionarily viable progeny. In both events, the mitochondrial recipient (as identified by the mitochondrial clade of the hybrid strains) was T. cruzi II and the mitochondrial donor was T. cruzi III.  相似文献   

7.
The development of new drugs against Trypanosoma cruzi is still required since the only two drugs currently used cause severe side effects. In this work we described the synthesis, the in vitro biological evaluation, and the SAR results of 1H-pyrazolo[3,4-b]pyridine derivatives, a new antichagasic agent series. The presence of fluorine, hydroxyl or nitro group at Y position resulted in at least one or two promising compounds in each set of derivatives (6f, 6g, 6i, 6l, and 6m). The SAR study showed that trypanocidal activity observed depends on both geometric and stereoelectronic parameters (MEP and frontier molecular orbitals HOMO and LUMO). We also used the Osiris program for calculating and comparing the fragment based druglikeness of the most active derivative (6g) (IC(50)=1.9microg/mL), the inactive compound (6o), and the current toxic antichagasic drugs (nifurtimox and benznidazole). Interestingly 6g presented a potential druglikeness higher than nifurtimox and benznidazole while 6o presented the lowest value among them.  相似文献   

8.
The aim of the present study was to study the trypanocidal activity of nanoparticles loaded with nifurtimox in comparison with the free drug against Trypanosoma cruzi, responsible for Chagas' disease. Ethylcyanoacrylate nanoparticles acted as the delivery system into cells. As the obligate replicative intracellular form is amastigote, in vitro studies were performed on this form of parasite as well as on cell culture derived trypomastigotes. The fluorescence method used here was very useful as it allowed for the simultaneous study of trypanocide activity and cytotoxicity by determining living or dead parasites within living or dead host cells. According to these results, the greatest trypanocide activity on cell culture-derived trypomastigotes was recorded for nifurtimox-loaded nanoparticles with a 50% inhibitory concentration (IC50) twenty times less than that of the free drug. The cytotoxicity of unloaded nanoparticles at low concentrations was similar to that obtained by free drug when evaluated on Vero cells. Furthermore, nifurtimox-loaded nanoparticles showed increased trypanocide activity on intracellular amastigotes with an IC50 thirteen times less than that of nifurtimox. We also observed that the unloaded nanoparticles possess the previously-described trypanocide activity, similar to the standard solution of nifurtimox, although the mechanism for this has not yet been elucidated. In conclusion, it was possible to establish in vitro conditions using nifurtimox encapsulated nanoparticles in order to decrease the doses of the drug and thus to obtain high trypanocidal activity on both free trypomastigotes and intracellular amastigotes with low cytotoxicity for the host cell.  相似文献   

9.
The trypanocidal activity of N-isopropyl oxamate (NIPOx) and the ethyl ester of N-isopropyl oxamate (Et-NIPOx) were tested on cultured epimastigotes (in vitro) and on murine trypanosomiasis (in vivo) using five different T. cruzi strains. When benznidazole and nifurtimox, used for comparison, were tested we found that only three of these T. cruzi strains were affected, whereas the other two strains, Miguz and Compostela, were resistant to the in vitro and the in vivo trypanocidal activity of these substances. In addition, when NIPOx was tested on cultured epimastigotes and on mice parasitaemia, trypanocidal activity was not obtained on either of these T. cruzi strains. Our experiments strongly suggest that NIPOx does not penetrate intact epimastigotes due to the polarity of its carboxylate whereas Et-NIPOx, acting as a prodrug, exhibited in vitro and in vivo trypanocidal activity in the five tested T. cruzi strains.  相似文献   

10.
Chagas' disease is endemic in Central and South American countries. Specific chemotherapy with nifurtimox or benznidazole has been recommended for treatment of recent infection but they have limited efficacy. The natural products veraguensin (1) and grandisin (2) have shown potent in vitro activity against trypomastigote parasite (Y strain) with IC(50) 2.3 microM (1) and 3.7 microM (2). We report herein the synthesis and in vitro trypanocidal evaluation of symmetrical and unsymmetrical 1,4-diaryl-1,4-diol derivatives as potential trypanocidal analogs of natural compounds 1 and 2. Among the synthesized products, compounds 1,4-bis-(3,4,5-trimethoxyphenyl)-1,4-butanediol (6a) and 1,4-bis-(3,4-dimethoxyphenyl)-1,4-butanediol (6b) showed better activity against Trypanosoma cruzi trypomastigotes with IC(50) 100 and 105 microM (Y strain), respectively, and 110 microM (Bolivia strain) for both compounds. However, the most active compound of this series was 1,4-bis-(3,4-dimethoxyphenyl)butane-1,4-dione (7b) with IC(50) 10 and 200 microM against Y and Bolivia strains, respectively.  相似文献   

11.
Chagas disease, caused by Trypanosoma cruzi, is a widespread infection in Latin America. Currently, only 2 partially effective and highly toxic drugs, i.e., benznidazole and nifurtimox, are available for the treatment of this disease, and several efforts are underway in the search for better chemotherapeutic agents. Here, we have determined the trypanocidal activity of 2,3-diphenyl-1 ,4-naphthoquinone (DPNQ), a novel quinone derivative. In vitro, DPNQ was highly cytotoxic at a low, micromolar concentration (LD50 = 2.5 microM) against epimastigote, cell-derived trypomastigote, and intracellular amastigote forms of T. cruzi, but not against mammalian cells (LD50 = 130 microM). In vivo studies on the murine model of Chagas disease revealed that DPNQ-treated animals (3 doses of 10 mg/kg/day) showed a significant delay in parasitemia peak and higher (up to 60%) survival rate 70 days post-infection, when compared with the control group (infected, untreated). We also observed a 2-fold decrease in parasitemia between the control group (infected, untreated) and the treated group (infected, treated). No apparent drug toxicity effects were noticed in the control group (uninfected, treated). In addition, we determined that DPNQ is the first competitive inhibitor of T. cruzi lipoamide dehydrogenase (TcLipDH) thus far described. Our results indicate that DPNQ is a promising chemotherapeutic agent against T. cruzi.  相似文献   

12.
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.  相似文献   

13.
Megazol (CL 64,855) a very effective drug in experimental infections by Trypanosoma cruzi, and also in in vitro assays with vertebrate forms of the parasite, had its activity upon macromolecule biosynthesis tested using tissue culture-derived amastigote forms. Megazol presented a drastic inhibition of [3H]-leucine incorporation, and only a partial inhibition of [3H]-thymidine and [3H]-uridine incorporation, suggesting a selective activity upon protein synthesis. Comparing the three drugs, megazol was more potent than nifurtimox and benznidazole in inhibiting protein and DNA synthesis. Megazol showed a 91% of inhibition of [3H]-leucine incorporation whereas nifurtimox and benznidazole, 0% and 2%, respectively. These latter two drugs inhibited the incorporation of all the precursors tested at similar levels, but the concentration of benznidazole was always three times higher, suggesting different mechanisms of action or, more probably, a greater efficiency of the 5-nitrofuran derivate in relation to the 2-nitroimidazole. So, we conclude that the mode of action of megazol is different from the ones of nifurtimox and benznidazole and that its primary effect is associated with an impairment of protein synthesis.  相似文献   

14.
Clone CL B5 of Trypanosoma cruzi is a beta-galactosidase expressing organism that was genetically transfected to be used for in vitro pharmacological screening. Biological parameters were determined, evaluating growth kinetics of epimastigotes, metacyclogenesis, infectivity to mammalian cell lines, parasitemia kinetics in mice and sensibility to nifurtimox and benznidazole. Differences in relation to other strains and CL parental strain were found, the most important being the incapability to produce death to mice in spite of the high inoculum used. However, it possesses the required features to be used for in vitro drug screening. Data obtained demonstrate that heterogeneity of T. cruzi appears even among clones of the same strain, and that these differences found do not prevent the use of clone CL B5 for the purpose that was engineered.  相似文献   

15.
Several β-carboline (9H-pyrido-[3,4-b]-indole) alkaloids were evaluated for in vitro trypanosomicidal activity against Trypanosoma cruzi epimastigotes belonging to two different strains (Tulahuén and LQ) showing different sensitivity to nifurtimox. Important differences were observed in the susceptibility of the parasites to these natural substances, with the relatively nifurtimox-resistant LQ strain showing greater sensitivity to the β-carbolines. Respiratory chain inhibition appears to be a possible determinant of the trypanosomicidal activity of these compounds.  相似文献   

16.
The activity of the antineoplastic drug tamoxifen was evaluated against Trypanosoma cruzi. In vitro activity was determined against epimastigote, trypomastigote and amastigote forms of CL14, Y and Y benznidazole resistant T. cruzi strains. Regardless of the strain used, the drug was active against all life-cycle stages of the parasite with a half maximal effective concentration ranging from 0.7-17.9 μM. Two experimental models of acute Chagas disease were used to evaluate the in vivo efficacy of treatment with tamoxifen. No differences in parasitemia and mortality were observed between control mock-treated and tamoxifen-treated mice.  相似文献   

17.
The effect of N-isopropyl oxamate on the activity of alpha-hydroxyacid dehydrogenase-isozyme II (HADH-isozyme II) from Trypanosoma cruzi was investigated. The kinetic studies showed that this substance was a competitive inhibitor of this isozyme. The attachment of the nonpolar isopropylic branched chain to the nitrogen of oxamate increased 12-fold the affinity of N-isopropyl oxamate for the active site of T. cruzi HADH-isozyme II. N-isopropyl oxamate was a selective inhibitor of HADH-isozyme II, since other T. cruzi dehydrogenases were not inhibited by this substance. Since HADH-isozyme II participates in the energy metabolism of T. cruzi, a trypanocidal effect can be expected with inhibitors of this isozyme. However, although it was not possible to detect any trypanocidal activity with N-isopropyl oxamate when the ethyl ester was tested as a possible trypanocidal prodrug, the expected trypanocidal effect was obtained, comparable to that obtained with nifurtimox and benznidazole.  相似文献   

18.
Metacyclogenesis of Trypanosoma cruzi of the Y and Berenice strains was studied in Triatoma pseudomaculata and Rhodnius neglectus. Results in vivo showed a higher production of metacyclic trypomastigotes in R. neglectus' digestive tube than in T. pseudomaculata. In vitro experiments were also carried out in order to compare the behavior of culture forms of T. cruzi incubated in extracts of different compartments (stomach, intestine, and rectum) of the digestive tract of both species of triatomines. A higher percentage of metacyclic trypomastigotes for both parasite strains, Y and Berenice, was detected in the rectum extract of R. neglectus in comparison to that from T. pseudomaculata. The same results were obtained with in vitro experiments, using parasites incubated in urine from each of those vectors. The adhesion of parasites to the incubated rectum epithelial cells was also compared. In incubations with the Y strain no significant differences were detected between the two triatomine species but, however, with the Berenice strain the mean percentage of cells with adhered parasites was higher in R. neglectus than in T. pseudomaculata.  相似文献   

19.
The uptake of bloodstream forms of Trypanosoma cruzi, Y and CL stocks, by mouse peritoneal macrophages and their intracellular differentiation and multiplication has been compared in vitro. After 48 h the number of macrophages showing intracellular amastigote forms was higher when the Y stock was used. The number of parasitized cells increased with the time of contact between parasites and macrophages. Prior treatment of the parasites with anti-T. cruzi antibodies and/or complement increased the number of infected macrophages, but did not interfere with their subsequent differentiation within the macrophages. The number of parasitized cells was greater when macrophages were obtained from mice previously treated with lipopolysaccharide, peptone or thioglycollate. Uptake was not appreciably affected when macrophages were pre-treated with trypsin or anti-macrophage serum, or when the parasites and macrophages were incubated in the presence of cytochalasin B. In the same experimental conditions, epimastigotes of T. cruzi when not able to differentiate into amastigotes. Their uptake was potentiated by previous treatment with specific antibodies and/or complement and was blocked by cytochalasin B. These results confirm that epimastigotes derived from T. cruzi cultures are phagocytosed and suggest that bloodstream forms penetrate actively into macrophages.  相似文献   

20.
The authors investigated the distribution of lectin receptors on Trypanosoma cruzi blood forms collected from mice inoculated with, respectively, the drug-resistant and drug-sensitive strains VL-10 and CL, and treated with the two standard active nitroheterocyclic compounds nifurtimox and benznidazole used for treatment of human Chagas' disease. Blood trypomastigotes purified in Fycoll-Hypaque were incubated with fluorescein-labelled lectins Con A, WGA, EE, WFA, TPA and PNA and then microscopically examined. Neither qualitative or quantitative differences in the fluorescence intensity could be detected between the parasites from VL-10 and CL strains submitted or not to treatment. The results suggest that both strains do not differ in their surface membrane carbohydrate moieties. Moreover, the rapid clearance of blood forms from the drug-sensitive strain in animals treated with single doses of both compounds is not likely to depend on membrane alterations expressed by changes in the carbohydrate components. Furthermore, resistance or sensitivity to drugs is not apparently related to carbohydrate distribution on T. cruzi blood forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号