共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Molecular Catalysis .B, Enzymatic》2010,64(3-4):179-187
Cytochrome P450 enzymes (P450s or CYPs) are good candidates for biocatalysis in the production of fine chemicals, including pharmaceuticals. Despite the potential use of mammalian P450s in various fields of biotechnology, these enzymes are not suitable as biocatalysts due to their low stability, low catalytic activity, and limited availability. Recently, wild-type and mutant forms of bacterial P450 BM3 (CYP102A1) from Bacillus megaterium have been found to metabolize various. It has therefore been suggested that CYP102A1 may be used to generate the metabolites of drugs and drug candidates. In this report, we show that the oxidation reactions of typical human CYP1A2 substrates (phenacetin, ethoxyresorufin, and methoxyresorufin) are catalyzed by both wild-type and mutant forms of CYP102A1. In the case of phenacetin, CYP102A1 enzymes show only O-deethylation product, even though two major products are produced as a result of O-deethylation and 3-hydroxylation reactions by human CYP1A2. Formation of the metabolites was confirmed by HPLC analysis and LC–MS to compare the metabolites with the actual biological metabolites produced by human CYP1A2. The results demonstrate that CYP102A1 mutants can be used for cost-effective and scalable production of human CYP1A2 drug metabolites. Our computational findings suggest that a conformational change in the cavity size of the active sites of the mutants is dependent on activity change. The modeling results further suggest that the activity change results from the movement of several specific residues in the active sites of the mutants. 相似文献
2.
Human cytochrome P450 (P450) enzymes exhibit remarkable diversity in their substrate specificities, participating in oxidation reactions of a wide range of xenobiotic drugs. Previously, we reported that alpha-naphthoflavone (ANF) is bound to the recombinant P450 1A2 tightly and stabilizes an overall enzyme conformation. The present study is designed to determine the type of P450 1A2 inhibition exerted by ANF, using two different substrates of P450 1A2, 7-ethoxycoumarin (EOC) and 7-ethoxyresorufin (EOR). ANF is generally known as a competitive inhibitor of the enzyme. However, in our tight-binding enzyme kinetics study, ANF acts as noncompetitive inhibitor in 7-ethoxycoumarin O-deethylation (ECOD) (K(i)=55.0 nM), but as competitive inhibitor in 7-ethoxyresorufin O-deethylation (EROD) (K(i)=1.4 nM). Based on homology modeling studies, ANF is positioned to bind to a hydrophobic cavity next to the active site where it may cause a direct effect on substrate binding. It is agreed with the predicted binding site of ANF in P450 3A4, in which ANF is rather known as a stimulating modulator. Our results suggest that ANF binds near the active site of P450 1A2 and exhibits differential inhibition mechanisms, possibly depending on the molecular structure of the substrate. 相似文献
3.
The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme's buried active site. The membrane facilitated the opening of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix. 相似文献
4.
Rowland P Blaney FE Smyth MG Jones JJ Leydon VR Oxbrow AK Lewis CJ Tennant MG Modi S Eggleston DS Chenery RJ Bridges AM 《The Journal of biological chemistry》2006,281(11):7614-7622
Cytochrome P450 2D6 is a heme-containing enzyme that is responsible for the metabolism of at least 20% of known drugs. Substrates of 2D6 typically contain a basic nitrogen and a planar aromatic ring. The crystal structure of human 2D6 has been solved and refined to 3.0A resolution. The structure shows the characteristic P450 fold as seen in other members of the family, with the lengths and orientations of the individual secondary structural elements being very similar to those seen in 2C9. There are, however, several important differences, the most notable involving the F helix, the F-G loop, the B'helix, beta sheet 4, and part of beta sheet 1, all of which are situated on the distal face of the protein. The 2D6 structure has a well defined active site cavity above the heme group, containing many important residues that have been implicated in substrate recognition and binding, including Asp-301, Glu-216, Phe-483, and Phe-120. The crystal structure helps to explain how Asp-301, Glu-216, and Phe-483 can act as substrate binding residues and suggests that the role of Phe-120 is to control the orientation of the aromatic ring found in most substrates with respect to the heme. The structure has been compared with published homology models and has been used to explain much of the reported site-directed mutagenesis data and help understand the metabolism of several compounds. 相似文献
5.
Shamsipur M Miran Beigi AA Teymouri M Poursaberi T Mostafavi SM Soleimani P Chitsazian F Tash SA 《Biodegradation》2012,23(2):311-318
Methyl tert-butyl ether (MTBE) is widely used as gasoline oxygenate and octane number enhancer for more complete combustion
in order to reduce the air pollution caused by motor vehicle exhaust. The possible adverse effects of MTBE on human health
are of major public concern. However, information on the metabolism of MTBE in human tissues is scarce. The present study
demonstrates that human cytochrome P450 2A6 is able to metabolize MTBE to tert-butyl alcohol (TBA), a major circulating metabolite
and marker for exposure to MTBE. As CYP2A6 is known to be constitutively expressed in human livers, we infer that it may play
a significant role in metabolism of gasoline ethers in liver tissue. 相似文献
6.
Human cytochrome P450 1A2 catalyzes important reactions in xenobiotic metabolism, including the N-hydroxylation of carcinogenic aromatic amines. In 2001, Chevalier et al. reported four new P450 1A2 sequence variants in the human population. We have now expressed these variants in Escherichia coli and measured protein expression (optical spectroscopy of holoenzyme and immunoblotting) and bioactivation of IQ (2-amino-3-methylimidazo[4,5-f]quinoline) and MeIQ (2-amino-2,4-dimethylimidazo[4,5-f]quinoline) in the lacZ reversion mutagenicity test. Enzyme kinetic analyses were performed for N-hydroxylation of five heterocyclic amine substrates and for O-deethylation of phenacetin. The most drastic effect was that of the R431W substitution: no holoenzyme was detectable. This residue is located in the "meander" peptide region and earlier site-directed mutagenesis studies demonstrated that it is critical for maintenance of protein tertiary structure. The other three variants had subtly different catalytic activities compared to the wild-type enzyme. 相似文献
7.
Yun CH Kim KH Calcutt MW Guengerich FP 《The Journal of biological chemistry》2005,280(13):12279-12291
Human cytochrome P450 (P450) 2A6 catalyzes 7-hydroxylation of coumarin, and the reaction rate is enhanced by cytochrome b5 (b5). 7-Alkoxycoumarins were O-dealkylated and also hydroxylated at the 3-position. Binding of coumarin and 7-hydroxycoumarin to ferric and ferrous P450 2A6 are fast reactions (k(on) approximately 10(6) m(-1) s(-1)), and the k(off) rates range from 5.7 to 36 s(-1) (at 23 degrees C). Reduction of ferric P450 2A6 is rapid (7.5 s(-1)) but only in the presence of coumarin. The reaction of the ferrous P450 2A6 substrate complex with O2 is rapid (k > or = 10(6) m(-1) s(-1)), and the putative Fe2+.O2 complex decayed at a rate of approximately 0.3 s(-1) at 23 degrees C. Some 7-hydroxycoumarin was formed during the oxidation of the ferrous enzyme under these conditions, and the yield was enhanced by b5. Kinetic analyses showed that approximately 1/3 of the reduced b5 was rapidly oxidized in the presence of the Fe2+.O2 complex, implying some electron transfer. High intrinsic and competitive and non-competitive intermolecular kinetic deuterium isotope effects (values 6-10) were measured for O-dealkylation of 7-alkoxycoumarins, indicating the effect of C-H bond strength on rates of product formation. These results support a scheme with many rapid reaction steps, including electron transfers, substrate binding and release at multiple stages, and rapid product release even though the substrate is tightly bound in a small active site. The inherent difficulty of chemistry of substrate oxidation and the lack of proclivity toward a linear pathway leading to product formation explain the inefficiency of the enzyme relative to highly efficient bacterial P450s. 相似文献
8.
Identification of cytochrome P450IA2 as a human autoantigen 总被引:2,自引:0,他引:2
M P Manns K J Griffin L C Quattrochi M Sacher H Thaler R H Tukey E F Johnson 《Archives of biochemistry and biophysics》1990,280(1):229-232
Autoantibodies occurring in a patient with idiopathic autoimmune type chronic active hepatitis (CAH) were found to react with purified rabbit cytochrome P450IA2 and to a much lesser extent with P450IA1. Both cytochrome P450s are known to be inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the rabbit, and the expression of the microsomal protein recognized by the patient serum was induced in adult rabbit livers after treatment with TCDD. This protein is only weakly detected in liver microsomes from neonatal rabbits exposed to TCDD in utero, which is consistent with the age-dependent induction of P450IA2 by TCDD. The serum specifically reacted with a protein of similar size in microsomes prepared from COS-1 cells transfected with an expression vector containing the full length human P450IA2 cDNA. This reactivity was not detected in the cells transfected with the vector alone, indicating that the antibody recognizes human P450IA2. In addition, the serum extensively inhibited 7-ethoxyresorufin O-deethylation catalyzed by isolated human liver microsomes. This catalytic activity is associated with class IA P450s in other species. A screen of sera from patients with various hepatic and nonhepatic diseases indicates that the autoantibody to P450IA2 occurs rarely in CAH. Cytochrome P450IA2 becomes the third P450 identified as an autoantigen in inflammatory liver diseases. 相似文献
9.
Characterization of human cytochrome P450 enzymes. 总被引:3,自引:0,他引:3
F P Guengerich 《FASEB journal》1992,6(2):745-748
Many biochemical approaches have been applied to the human cytochrome P450 enzymes, and more than 20 different gene products have been characterized with regard to their properties and catalytic specificities. The complement of the various cytochrome P450 enzymes in a given individual varies markedly, and dramatic differences may be seen in drug metabolism, pharmacological response, and susceptibility to toxic effects. An understanding of the nature of the individual cytochrome P450 enzymes and their regulation should be useful in determining the most suitable animal models, ascertaining risk from chemicals, and in avoiding undesirable drug interactions. 相似文献
10.
Loge C Le Borgne M Marchand P Robert JM Le Baut G Palzer M Hartmann RW 《Journal of enzyme inhibition and medicinal chemistry》2005,20(6):581-585
A three-dimensional (3-D) structure of human aromatase (CYP 19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys 119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles ofAsp309 and His480 in the aromatization of the steroid A ring. 相似文献
11.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol. 相似文献
12.
Cedric Loge Marc Le Borgne Pascal Marchand Jean-Michel Robert Guillaume Le Baut Martina Palzer 《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):581-585
A three-dimensional (3-D) structure of human aromatase (CYP19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles of Asp309 and His480 in the aromatization of the steroid A ring. 相似文献
13.
Communicated by Ramaswamy H. Sarma 相似文献
14.
The one-electron autoxidation of human cytochrome P450 3A4 总被引:1,自引:0,他引:1
Denisov IG Grinkova YV McLean MA Sligar SG 《The Journal of biological chemistry》2007,282(37):26865-26873
Monomeric cytochrome P450 3A4 (CYP3A4), the most prevalent cytochrome P450 in human liver, can simultaneously bind one, two, or three molecules of substrates and effectors. The difference in the functional properties of such binding intermediates gives rise to homotropic and heterotropic cooperative kinetics of this enzyme. To understand the overall kinetic processes operating in CYP3A4, we documented the kinetics of autoxidation of the oxy-ferrous intermediate of CYP3A4 as a function of testosterone concentration. The rate of autoxidation in the presence of testosterone was significantly lower than that observed with no substrate present. Stability of the oxy-ferrous complex in CYP3A4 and the amplitude of the geminate CO rebinding increased significantly as a result of binding of just one testosterone molecule. In contrast, the slow phase in the kinetics of cyanide binding to the ferric CYP3A4 correlated with a shift of the heme iron spin state, which is only caused by the association of a second molecule of testosterone. Our results show that the first substrate binding event prevents the escape of diatomic ligands from the distal heme binding pocket, stabilizes the oxy-ferrous complex, and thus serves as an important modulator of the uncoupling channel in the cytochromes P450. 相似文献
15.
The regioselectivity for progesterone hydroxylation by cytochrome P450 2B1 was re-engineered based on the x-ray crystal structure of cytochrome P450 2C5. 2B1 is a high K(m) progesterone 16alpha-hydroxylase, whereas 2C5 is a low K(m) progesterone 21-hydroxylase. Initially, nine individual 2B1 active-site residues were changed to the corresponding 2C5 residues, and the mutants were purified from an Escherichia coli expression system and assayed for progesterone hydroxylation. At 150 microm progesterone, I114A, F297G, and V363L showed 5-15% of the 21-hydroxylase activity of 2C5, whereas F206V showed high activity for an unknown product and a 13-fold decrease in K(m). Therefore, a quadruple mutant, I114A/F206V/F297G/V363L (Q), was constructed that showed 60% of 2C5 progesterone 21-hydroxylase activity and 57% regioselectivity. Based on their 2C5-like testosterone hydroxylation profiles, S294D and I477F alone and in combination were added to the quadruple mutant. All three mutants showed enhanced regioselectivity (70%) for progesterone 21-hydroxylation, whereas only Q/I477F had a higher k(cat). Finally, the remaining three single mutants, V103I, V367L, and G478V, were added to Q/I477F and Q/S294D/I477F, yielding seven additional multiple mutants. Among these, Q/V103I/S294D/I477F showed the highest k(cat) (3-fold higher than that of 2C5) and 80% regioselectivity for progesterone 21-hydroxylation. Docking of progesterone into a three-dimensional model of this mutant indicated that 21-hydroxylation is favored. In conclusion, a systematic approach to convert P450 regioselectivity across subfamilies suggests that active-site residues are mainly responsible for regioselectivity differences between 2B1 and 2C5 and validates the reliability of 2B1 models based on the crystal structure of 2C5. 相似文献
16.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population. 相似文献
17.
Structural insight into the altered substrate specificity of human cytochrome P450 2A6 mutants 总被引:1,自引:0,他引:1
Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B'-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility. 相似文献
18.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population. 相似文献
19.
Renke Dai Suoping Zhai Xiaoxiong Wei Matthew R. Pincus Robert E. Vestal Fred K. Friedman 《Journal of Protein Chemistry》1998,17(7):643-650
Cytochrome P450 1A2 metabolizes a number of important drugs, procarcinogens, and endogenous compounds. Several flavones, a
class of phytochemicals consumed in the human diet, have been shown to differentially inhibit human P450 1A2-mediated methoxyresorufin
demethylase. A molecular model of this P450 was constructed in order to elucidate the molecular basis of the P450-flavone
interaction. Flavone and its 3,5,7-trihydroxy and 3,5,7-trimethoxy derivatives were docked into the active site to assess
their mode of binding. The site is hydrophobic and includes several residues that hydrogen bond with substituents on the flavone
nucleus. The binding interactions of these flavones in the modeled active side are consistent with their relative inhibitory
potentials, namely 3,5,7-trihydroxylflavone > flavone >3,5,7-trimethoxylflavone, toward P450 1A2-mediated methoxyresorufin
demethylation. 相似文献
20.
Yano JK Hsu MH Griffin KJ Stout CD Johnson EF 《Nature structural & molecular biology》2005,12(9):822-823
Human microsomal cytochrome P450 2A6 (CYP2A6) contributes extensively to nicotine detoxication but also activates tobacco-specific procarcinogens to mutagenic products. The CYP2A6 structure shows a compact, hydrophobic active site with one hydrogen bond donor, Asn297, that orients coumarin for regioselective oxidation. The inhibitor methoxsalen effectively fills the active site cavity without substantially perturbing the structure. The structure should aid the design of inhibitors to reduce smoking and tobacco-related cancers. 相似文献