首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxynojirimycin (DNJ) based imino sugars display antiviral activity in the tissue culture surrogate model of Hepatitis C (HCV), bovine viral diarrhoea virus (BVDV), mediated by inhibition of ER α-glucosidases. Here, the antiviral activities of neoglycoconjugates derived from deoxynojirimycin, and a novel compound derived from deoxygalactonojirimycin, by click chemistry with functionalised adamantanes are presented. Their antiviral potency, in terms of both viral infectivity and virion secretion, with respect to their effect on α-glucosidase inhibition, are reported. The distinct correlation between the ability of long alkyl chain derivatives to inhibit ER α-glucosidases and their anti-viral effect is demonstrated. Increasing alkyl linker length between DNJ and triazole groups increases α-glucosidase inhibition and reduces the production of viral progeny RNA and the maturation of the envelope polypeptide. Disruption to viral glycoprotein processing, with increased glucosylation on BVDV E2 species, is representative of α-glucosidase inhibition, whilst derivatives with longer alkyl linkers also show a further decrease in infectivity of secreted virions, an effect proposed to be distinct from α-glucosidase inhibition.  相似文献   

2.
It has long been thought that iminosugar antiviral activity is a function of inhibition of endoplasmic reticulum-resident α-glucosidases, and on this basis, many iminosugars have been investigated as therapeutic agents for treatment of infection by a diverse spectrum of viruses, including dengue virus (DENV). However, iminosugars are glycomimetics possessing a nitrogen atom in place of the endocyclic oxygen atom, and the ubiquity of glycans in host metabolism suggests that multiple pathways can be targeted via iminosugar treatment. Successful treatment of patients with glycolipid processing defects using iminosugars highlights the clinical exploitation of iminosugar inhibition of enzymes other than ER α-glucosidases. Evidence correlating antiviral activity with successful inhibition of ER glucosidases together with the exclusion of alternative mechanisms of action of iminosugars in the context of DENV infection is limited. Celgosivir, a bicyclic iminosugar evaluated in phase Ib clinical trials as a therapeutic for the treatment of DENV infection, was confirmed to be antiviral in a lethal mouse model of antibody-enhanced DENV infection. In this study we provide the first evidence of the antiviral activity of celgosivir in primary human macrophages in vitro, in which it inhibits DENV secretion with an EC50 of 5 μM. We further demonstrate that monocyclic glucose-mimicking iminosugars inhibit isolated glycoprotein and glycolipid processing enzymes and that this inhibition also occurs in primary cells treated with these drugs. By comparison to bicyclic glucose-mimicking iminosugars which inhibit glycoprotein processing but do not inhibit glycolipid processing and galactose-mimicking iminosugars which do not inhibit glycoprotein processing but do inhibit glycolipid processing, we demonstrate that inhibition of endoplasmic reticulum-resident α-glucosidases, not glycolipid processing, is responsible for iminosugar antiviral activity against DENV. Our data suggest that inhibition of ER α-glucosidases prevents release of virus and is the primary antiviral mechanism of action of iminosugars against DENV.  相似文献   

3.
The iminosugar N-butyldeoxynojirimycin (NB-DNJ), an endoplasmic reticulum alpha-glucosidase inhibitor, has an antiviral effect against bovine viral diarrhea virus (BVDV). In this report, we investigate the molecular mechanism of this inhibition by studying the folding pathway of BVDV envelope glycoproteins in the presence and absence of NB-DNJ. Our results show that, while the disulfide-dependent folding of E2 glycoprotein occurs rapidly (2.5 min), the folding of E1 occurs slowly (30 min). Both BVDV envelope glycoproteins associate rapidly with calnexin and dissociate with different kinetics. The release of E1 from the interaction with calnexin coincides with the beginning of E1 and E2 association into disulfide-linked heterodimers. In the presence of NB-DNJ, the interaction of E1 and E2 with calnexin is prevented, leading to misfolding of the envelope glycoproteins and inefficient formation of E1-E2 heterodimers. The degree of misfolding and the lack of association of E1 and E2 into disulfide-linked complexes in the presence of NB-DNJ correlate with the dose-dependent antiviral effect observed for this iminosugar.  相似文献   

4.
The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity.  相似文献   

5.
Viral hepatitis C is a dangerous, widespread human disease. The choice of drugs for treatment of chronic hepatitis C virus (HCV) infection is limited, and prophylactic vaccines do not exist. Thus, the development of new antiviral strategies and substances is an issue of great importance. The targeting of viral morphogenesis might be used as an alternative approach to existing strategies of HCV blocking. The glycosylation of viral envelope proteins is an important step of viral particle morphogenesis, which determines the correct assembly of HCV virions. Derivatives of a glucose analog deoxynojirimycin (DNJ) act as an α-glucosidase inhibitor and can impair the assembly of structural proteins and HCV particle formation. In the present work, the effects of alkylated DNJ derivatives, N-pentyl-DNJ and N-benzyl-DNJ, on HCV morphogenesis were studied in a model system of insect cells that produce three viral structural proteins with the formation of virus-like particles. It was shown that DNJ derivatives impair the intracellular N-glycosylation of HCV envelope glycoproteins. At the concentration of 1 mM, these substances cause an increase in the levels of gpE1 and gpE2 glycoproteins and a decrease in their electrophoretic mobility, apparently due to the inhibition of α-glucosidase in the endoplasmic reticulum and the accumulation of hyperglycosylated N-glycans in HCV glycoproteins. The interaction of the latter with calnexin results in the formation of unproductive dimers and blocks the productive assembly of virus-like particles.  相似文献   

6.
Based on antiviral screening of our diphenylmethane derivatives prepared as steroid substitutes, we identified a 1,1-diphenylcyclobutane analog (9) and two diethyldiphenylsilane analogs (12 and 13) as superior lead compounds with potent anti-bovine viral diarrhea virus (BVDV) activity, having 50% effective concentration (EC50: based on reduction of BVDV replication-induced cell destruction) and 50% cytotoxic concentration (CC50: based on reduction of viable cell number) values of 6.2–8.4 μM and >100 μM, respectively, in Madin–Darby bovine kidney (MDBK) cells infected with BVDV.  相似文献   

7.
Capsid-targeted viral inactivation is a novel protein-based strategy for the treatment of viral infections. Virus particles are inactivated by targeting toxic fusion proteins to virions, where they destroy viral components from within. We have fused Staphylococcus nuclease (SN) to the C-terminal end of Moloney murine leukemia virus Gag and demonstrated that expression of this fusion protein in chronically infected chicken embryo fibroblasts resulted in its incorporation into virions and subsequent inactivation of the virus particles by degradation of viral RNA. Release of particles incorporating Gag-SN fusion proteins into the extracellular milieu activates the nuclease and results in destruction of the virion from within. By comparing the effects of incorporated SN and SN*, an enzymatically inactive missense mutant form of SN, on the infectivity of virus particles, we have clearly demonstrated that nucleolytic activity is the antiviral mechanism. Expression of Gag-SN fusion proteins as a therapeutic agent causes a stable reduction of infectious titers by 20- to 60-fold. The antiviral effect of capsid-targeted viral inactivation in our model system, using both prophylactic and therapeutic approaches, suggests that a similar anti-human immunodeficiency virus strategy might be successful.  相似文献   

8.
Bovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance.Capitalizing from a long-standing experience in antiviral drug design and development, in this work we present and characterize a series of small molecules based on the 9-aminoacridine scaffold that exhibit potent anti-BVDV activity coupled with low cytotoxicity. The relevant viral protein target – the RNA-dependent RNA polymerase – the binding mode, and the mechanism of action of these new antivirals have been determined by a combination of in vitro (i.e., enzymatic inhibition, isothermal titration calorimetry and site-directed mutagenesis assays) and computational experiments. The overall results obtained confirm that these acridine-based derivatives are promising compounds in the treatment of BVDV infections and, based on the reported structure-activity relationship, can be selected as a starting point for the design of a new generation of improved, safe and selective anti-BVDV agents.  相似文献   

9.
GB virus B (GBV-B) is the closest relative of hepatitis C virus (HCV) and is an attractive surrogate model for HCV antiviral studies. GBV-B induces an acute, resolving hepatitis in tamarins. Utilizing primary cultures of tamarin hepatocytes, we have previously developed a tissue culture system that exhibits high levels of GBV-B replication. In this report, we have extended the utility of this system for testing antiviral compounds. Treatment with human interferon provided only a marginal antiviral effect, while poly(I-C) yielded >3 and 4 log units of reduction of cell-associated and secreted viral RNA, respectively. Interestingly, treatment of GBV-B-infected hepatocytes with ribavirin resulted in an approximately 4-log decrease in viral RNA levels. Guanosine blocked the antiviral effect of ribavirin, suggesting that inhibition of IMP dehydrogenase (IMPDH) and reduction of intracellular GTP levels were essential for the antiviral effect. However, mycophenolic acid, another IMPDH inhibitor, had no antiviral effect. Virions harvested from ribavirin-treated cultures exhibited a dramatically reduced specific infectivity. These data suggest that incorporation of ribavirin triphosphate induces error-prone replication with concomitant reduction in infectivity and that reduction of GTP pools may be required for incorporation of ribavirin triphosphate. In contrast to the in vitro studies, no significant reduction in viremia was observed in vivo following treatment of tamarins with ribavirin during acute infection with GBV-B. These findings are consistent with the observation that ribavirin monotherapy for HCV infection decreases liver disease without a significant reduction in viremia. Our data suggest that nucleoside analogues that induce error-prone replication could be an attractive approach for the treatment of HCV infection if administered at sufficient levels to result in efficient incorporation by the viral polymerase.  相似文献   

10.
Previous studies have suggested that α-glucosidase inhibitors such as castanospermine and deoxynojirimycin inhibit dengue virus type 1 infection by disrupting the folding of the structural proteins prM and E, a step crucial to viral secretion. We extend these studies by evaluating the inhibitory activity of castanospermine against a panel of clinically important flaviviruses including all four serotypes of dengue virus, yellow fever virus, and West Nile virus. Using in vitro assays we demonstrated that infections by all serotypes of dengue virus were inhibited by castanospermine. In contrast, yellow fever virus and West Nile virus were partially and almost completely resistant to the effects of the drug, respectively. Castanospermine inhibited dengue virus infection at the level of secretion and infectivity of viral particles. Importantly, castanospermine prevented mortality in a mouse model of dengue virus infection, with doses of 10, 50, and 250 mg/kg of body weight per day being highly effective at promoting survival (P ≤ 0.0001). Correspondingly, castanospermine had no adverse or protective effect on West Nile virus mortality in an analogous mouse model. Overall, our data suggest that castanospermine has a strong antiviral effect on dengue virus infection and warrants further development as a possible treatment in humans.  相似文献   

11.
Mansouri S  Kutky M  Hudak KA 《PloS one》2012,7(5):e36369
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.  相似文献   

12.
Our lead iminosugar analog called UV-4 or N-(9-methoxynonyl)-1-deoxynojirimycin inhibits activity of endoplasmic reticulum (ER) α-glucosidases I and II and is a potent, host-targeted antiviral candidate. The mechanism of action for the antiviral activity of iminosugars is proposed to be inhibition of ER α-glucosidases leading to misfolding of critical viral glycoproteins. These misfolded glycoproteins would then be incorporated into defective virus particles or targeted for degradation resulting in a reduction of infectious progeny virions. UV-4, and its hydrochloride salt known as UV-4B, is highly potent against dengue virus in vitro and promotes complete survival in a lethal dengue virus mouse model. In the current studies, UV-4 was shown to be highly efficacious via oral gavage against both oseltamivir-sensitive and -resistant influenza A (H1N1) infections in mice even if treatment was initiated as late as 48-72 hours after infection. The minimal effective dose was found to be 80-100 mg/kg when administered orally thrice daily. UV-4 treatment did not affect the development of protective antibody responses after either influenza infection or vaccination. Therefore, UV-4 is a promising candidate for further development as a therapeutic intervention against influenza.  相似文献   

13.
Ribonucleotide reductase inhibitors enhance the anti-HIV-1 activities of a variety of nucleoside analogs, including those that act as chain terminators and those that increase the HIV-1 mutation rate. However the use of these ribonucleotide reductase inhibitors is limited by their associated toxicities. The hydroxylated phytostilbene resveratrol has activity in a host of systems including inhibition of ribonucleotide reductase and has minimal toxicity. Here we synthesized derivatives of resveratrol and examined them for anti-HIV-1 activity and their ability to enhance the antiviral activity of decitabine, a nucleoside analog that decreases viral replication by increasing the HIV-1 mutation rate. The data demonstrates that six of the derivatives have anti-HIV-1 activity greater than resveratrol. However, only resveratrol acted in synergy with decitabine to inhibit HIV-1 infectivity. These results reveal novel resveratrol derivatives with anti-HIV-1 activity that may have mechanisms of action that differ from the drugs currently used to treat HIV-1.  相似文献   

14.
Biopharmaceutical products produced from cell cultures have a potential for viral contamination from cell sources or from adventitious introduction during production. The objective of this study was to assess viral clearance in the production of insect cell-derived recombinant human papillomavirus (HPV)-16 type L1 virus-like particles (VLPs). We selected Japanese encephalitis virus (JEV), bovine viral diarrhea virus (BVDV), and minute virus of mice (MVM) as relevant viruses to achieve the aim of this study. A downstream process for the production of purified HPV-16 L1 VLPs consisted of detergent lysis of harvested cells, sonication, sucrose cushion centrifugation, and cesium chloride (CsCl) equilibrium density centrifugation. The capacity of each purification/treatment step to clear viruses was expressed as reduction factor by measuring the difference in log virus infectivity of sample pools before and after each process. As a result, detergent treatment (0.5% v/v, Nonidet P-40/phosphate-buffered saline) was effective for inactivating enveloped viruses such as JEV and BVDV, but no significant reduction (< 1.0 log(10)) was observed in the non-enveloped MVM. The CsCl equilibrium density centrifugation was fairly effective for separating all three relevant adventitious viruses with different CsCl buoyant density from that of HPV-16 L1 VLPs (JEV, BVDV, and MVM = 4.30, 3.10, > or = 4.40 log(10) reductions). Given the study conditions we used, overall cumulative reduction factors for clearance of JEV, BVDV, and MVM were > or = 10.50, > or = 9.20, and > or = 6.40 log(10) in 150 ml of starting cell cultures, respectively.  相似文献   

15.
16.
In previous studies, bovine viral diarrhea virus (BVDV) remained associated with IVF embryos after viral exposure and washing. However, uterine tubal cells (UTC) were not infected when exposed embryos were washed and individually co-cultured with them. The objective of this study was to evaluate quantity and infectivity of embryo-associated virus and antiviral influence of a blastocyst as possible explanations for failure to infect the UTC in vitro. Morulae and blastocysts were produced in vitro and washed. A portion of the embryos were incubated for 2 h in medium containing 10(6) to 10(8) cell culture infective doses (50%, CCID50) of a genotype I, noncytopathic BVDV per milliliter and then washed again. Virus isolation was attempted on sonicated negative (virus unexposed) and positive (virus exposed) control embryo groups after washing. The influence of quantity and infectivity of embryo-associated virus was evaluated by transferring exposed, washed embryo groups (2, 5, and 10 embryos/group) or sonicate fluid of exposed, washed, sonicated embryo groups (2, 5, and 10 embryos/group) to cultures containing bovine UTC in IVC medium that was free of BVDV neutralizing activity. The antiviral influence of an embryo was evaluated by adding 1 to 10(5) CCID50 of BVDV to UTC in the presence or absence of a single unexposed blastocyst in IVC medium. After 2 d in co-culture, the UTC, IVC medium and washed embryos (when present) were tested separately for the presence of BVDV using virus isolation. Virus was isolated from sonicate fluids of all positive but no negative controls. Virus was not isolated from any UTC following 2 d of culture with virally exposed groups of intact embryos. However, virus was isolated from UTC cultured with sonicate fluids from some groups of 5 (60%) and 10 (40%) embryos. Infective virus also remained associated with some groups of 2 (20%), 5 (40%) and 10 (60%) intact embryos after 48 h of post-exposure culture. Finally, primary cultures of UTC were more susceptible to infection with BVDV in the absence of a blastocyst (P = 0.01). Results indicate that insufficient quantity and reduced infectivity of embryo-associated virus as well as an antiviral influence of intact IVF blastocysts may all contribute to failure of embryo-associated virus to infect UTC in vitro.  相似文献   

17.
Silkworms (Bombyx mori L.) accumulate 1-deoxynojirimycin (DNJ), a mulberry iminosugar, by feeding on mulberry leaves. DNJ is a potent α-glucosidase inhibitor that helps prevent diabetes. However, iminosugars are toxic to many insects. In this study, we analyzed the concentrations of three major mulberry iminosugars—DNJ, 2-O-α-d-galactopyranosyl-DNJ (GAL-DNJ), and fagomine—in the larvae of mulberry-feeding insect species (two mulberry specialists and six non-specialists), to clarify the differences in accumulation, metabolism, and excretion of iminosugars between specialists and non-specialists. DNJ and fagomine concentrations in the two Bombyx larvae were much higher than those in the other larvae. GAL-DNJ concentrations were low in all species. DNJ and fagomine concentrations in the excrements of Agrotis segetum (Denis and Schiffermüller) and Sarcopolia illoba (Butler) larvae were lower than in those of the other larvae. Further, iminosugar concentrations in the hemolymph of B. mori, B. mandarina Moore, and S. illoba larvae were analyzed. DNJ and fagomine concentrations in the hemolymph of the two Bombyx larvae were much higher than in that of S. illoba. DNJ concentrations in the whole bodies of the two Bombyx larvae decreased as they developed. Similarly, DNJ, and fagomine concentrations in the hemolymph of B. mori larvae decreased with growth.  相似文献   

18.
Bovine viral diarrhea virus (BVDV), a pestivirus of the Flaviviridae family, is an economically important cattle pathogen with a worldwide distribution. Both noncytopathic (ncp) and cytopathic (cp) biotypes of BVDV can be isolated from persistently infected cattle suffering from the lethal mucosal disease. The cp biotype correlates with the production of the NS3 nonstructural protein, which in the corresponding ncp biotype is present in its uncleaved form, NS23. Previously, we have shown that cp but not ncp BVDV induces the formation of alpha/beta interferons in bovine macrophages. In this study, we demonstrate that ncp BVDV inhibits the induction of apoptosis and the expression of interferon alpha/beta by poly(IC), a synthetic double-stranded RNA (dsRNA). Inhibition was observed only in cells which had been infected with ncp BVDV at least 12 h prior to the addition of dsRNA, which indicates that expression of viral proteins is necessary for the ncp virus to inhibit the effects of poly(IC). Additional experiments using transfected poly(IC) showed that ncp BVDV interfered with the intracellular action of dsRNA rather than with its uptake into the cells. Infected cells were not resistant to induction of apoptosis by actinomycin D or staurosporine, which suggests that ncp BVDV may specifically interfere with signaling through dsRNA. Interference with the innate antiviral host responses may explain the successful establishment of persistent infection by ncp BVDV in fetuses early in their development.  相似文献   

19.
Lack of vaccine and effective antiviral drugs against chikungunya virus (CHIKV) outbreaks have led to significant impact on health care in the developing world. Here, we evaluated the antiviral effects of tetracycline (TETRA) derivatives and other common antiviral agents against CHIKV. Our results showed that within the TETRA derivatives group, Doxycycline (DOXY) exhibited the highest inhibitory effect against CHIKV replication in Vero cells. On the other hand, in the antiviral group Ribavirin (RIBA) showed higher inhibitory effects against CHIKV replication compared to Aciclovir (ACIC). Interestingly, RIBA inhibitory effects were also higher than all but DOXY within the TETRA derivatives group. Docking studies of DOXY to viral cysteine protease and E2 envelope protein showed non-competitive interaction with docking energy of -6.6±0.1 and -6.4±0.1 kcal/mol respectively. The 50% effective concentration (EC50) of DOXY and RIBA was determined to be 10.95±2.12 μM and 15.51±1.62 μM respectively, while DOXY+RIBA (1:1 combination) showed an EC50 of 4.52±1.42 μM. When compared, DOXY showed higher inhibition of viral infectivity and entry than RIBA. In contrast however, RIBA showed higher inhibition against viral replication in target cells compared to DOXY. Assays using mice as animal models revealed that DOXY+RIBA effectively inhibited CHIKV replication and attenuated its infectivity in vivo. Further experimental and clinical studies are warranted to investigate their potential application for clinical intervention of CHIKV disease.  相似文献   

20.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号