首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atopic dermatitis represents a chronically relapsing skin disease with a steadily increasing prevalence of 10-20% in children. Skin-infiltrating T cells, dendritic cells (DC), and mast cells are thought to play a crucial role in its pathogenesis. We report that the expression of the CC chemokine CCL1 (I-309) is significantly and selectively up-regulated in atopic dermatitis in comparison to psoriasis, cutaneous lupus erythematosus, or normal skin. CCL1 serum levels of atopic dermatitis patients are significantly higher than levels in healthy individuals. DC, mast cells, and dermal endothelial cells are abundant sources of CCL1 during atopic skin inflammation and allergen challenge, and Staphylococcus aureus-derived products induce its production. In vitro, binding and cross-linking of IgE on mast cells resulted in a significant up-regulation of this inflammatory chemokine. Its specific receptor, CCR8, is expressed on a small subset of circulating T cells and is abundantly expressed on interstitial DC, Langerhans cells generated in vitro, and their monocytic precursors. Although DC maintain their CCR8+ status during maturation, brief activation of circulating T cells recruits CCR8 from intracytoplamic stores to the cell surface. Moreover, the inflammatory and atopy-associated chemokine CCL1 synergizes with the homeostatic chemokine CXCL12 (SDF-1alpha) resulting in the recruitment of T cell and Langerhans cell-like DC. Taken together, these findings suggest that the axis CCL1-CCR8 links adaptive and innate immune functions that play a role in the initiation and amplification of atopic skin inflammation.  相似文献   

2.
It is unknown whether neutrophilic inflammations can be regulated by T cells. This question was analyzed by studying acute generalized exanthematous pustulosis (AGEP), which is a severe drug hypersensitivity resulting in intraepidermal or subcorneal sterile pustules. Recently, we found that drug-specific blood and skin T cells from AGEP patients secrete high levels of the potent neutrophil-attracting chemokine IL-8/CXCL8. In this study, we characterize the phenotype and function of CXCL8-producing T cells. Supernatants from CXCL8(+) T cells were strongly chemotactic for neutrophils, CXCR1, and CXCR2 transfectants, but not for transfectants expressing CXCR4, CX3CR1, human chemokine receptor, and RDC1. Neutralization experiments indicated that chemotaxis was mainly mediated by CXCL8, but not by granulocyte chemotactic protein-2/CXCL6, epithelial cell-derived neutrophil attractant-78/CXCL5, or growth-related oncogene-alpha,beta,gamma/CXCL1,2,3. Interestingly, approximately 2.5% of CD4(+) T cells in normal peripheral blood also produced CXCL8. In addition to CXCL8, AGEP T cells produced large amounts of the monocyte/neutrophil-activating cytokine GM-CSF, and the majority released IFN-gamma and the proinflammatory cytokine TNF-alpha. Furthermore, apoptosis in neutrophils treated with conditioned medium from CXCL8(+) T cells could be reduced by 40%. In lesional skin, CXCL8(+) T cells consistently expressed the chemokine receptor CCR6, suggesting a prominent role for CCR6 in early inflammatory T cell recruitment. Finally, our data suggest that CXCL8-producing T cells facilitate skin inflammation by orchestrating neutrophilic infiltration and ensuring neutrophil survival, which leads to sterile pustular eruptions found in AGEP patients. This mechanism may be relevant for other T cell-mediated diseases with a neutrophilic inflammation such as Beh?et's disease and pustular psoriasis.  相似文献   

3.
CCL5 (RANTES (regulated on activation normal T cell expressed and secreted)) and its cognate receptor, CCR5, have been implicated in T cell activation. CCL5 binding to glycosaminoglycans (GAGs) on the cell surface or in extracellular matrix sequesters CCL5, thereby immobilizing CCL5 to provide the directional signal. In two CCR5-expressing human T cell lines, PM1.CCR5 and MOLT4.CCR5, and in human peripheral blood-derived T cells, micromolar concentrations of CCL5 induce apoptosis. CCL5-induced cell death involves the cytosolic release of cytochrome c, the activation of caspase-9 and caspase-3, and poly(ADP-ribose) polymerase cleavage. CCL5-induced apoptosis is CCR5-dependent, since native PM1 and MOLT4 cells lacking CCR5 expression are resistant to CCL5-induced cell death. Furthermore, we implicate tyrosine 339 as a critical residue involved in CCL5-induced apoptosis, since PM1 cells expressing a tyrosine mutant receptor, CCR5Y339F, do not undergo apoptosis. We show that CCL5-CCR5-mediated apoptosis is dependent on cell surface GAG binding. The addition of exogenous heparin and chondroitin sulfate and GAG digestion from the cell surface protect cells from apoptosis. Moreover, the non-GAG binding variant, (44AANA47)-CCL5, fails to induce apoptosis. To address the role of aggregation in CCL5-mediated apoptosis, nonaggregating CCL5 mutant E66S, which forms dimers, and E26A, which form tetramers at micromolar concentrations, were utilized. Unlike native CCL5, the E66S mutant fails to induce apoptosis, suggesting that tetramers are the minimal higher ordered CCL5 aggregates required for CCL5-induced apoptosis. Viewed altogether, these data suggest that CCL5-GAG binding and CCL5 aggregation are important for CCL5 activity in T cells, specifically in the context of CCR5-mediated apoptosis.  相似文献   

4.
5.

Background & Aims

CCL25/CCR9 is a non-promiscuous chemokine/receptor pair and a key regulator of leukocyte migration to the small intestine. We investigated here whether CCL25/CCR9 interactions also play a role in the regulation of inflammatory responses in the large intestine.

Methods

Acute inflammation and recovery in wild-type (WT) and CCR9−/− mice was studied in a model of dextran sulfate sodium (DSS)-induced colitis. Distribution studies and phenotypic characterization of dendritic cell subsets and macrophage were performed by flow cytometry. Inflammatory bowel disease (IBD) scores were assessed and expression of inflammatory cytokines was studied at the mRNA and the protein level.

Results

CCL25 and CCR9 are both expressed in the large intestine and are upregulated during DSS colitis. CCR9−/− mice are more susceptible to DSS colitis than WT littermate controls as shown by higher mortality, increased IBD score and delayed recovery. During recovery, the CCR9−/− colonic mucosa is characterized by the accumulation of activated macrophages and elevated levels of Th1/Th17 inflammatory cytokines. Activated plasmacytoid dendritic cells (DCs) accumulate in mesenteric lymph nodes (MLNs) of CCR9−/− animals, altering the local ratio of DC subsets. Upon re-stimulation, T cells isolated from these MLNs secrete significantly higher levels of TNFα, IFNγ, IL2, IL-6 and IL-17A while down modulating IL-10 production.

Conclusions

Our results demonstrate that CCL25/CCR9 interactions regulate inflammatory immune responses in the large intestinal mucosa by balancing different subsets of dendritic cells. These findings have important implications for the use of CCR9-inhibitors in therapy of human IBD as they indicate a potential risk for patients with large intestinal inflammation.  相似文献   

6.
Coordinated neutrophil and monocyte recruitment is a characteristic feature of acute lung inflammatory responses. We investigated the role of monocyte chemotactic protein-1 (CCL2, JE) and the chemokine receptor CCR2 in regulating alveolar leukocyte traffic. Groups of wild-type (WT) mice, CCR2-deficient mice, lethally irradiated CCR2-deficient and WT mice that were reciprocally bone marrow transplanted (chimeric CCR2 deficient and WT, respectively), chimeric CCR2-deficient mice with an enriched CCR2(+) alveolar macrophage population, and CCR2-deficient mice transfused with CCR2(+) mononuclear cells were treated with intratracheal CCL2 and/or Escherichia coli endotoxin. Our data show that alveolar monocyte recruitment is strictly dependent on CCR2. LPS-induced neutrophil migration to the lungs is CCR2 independent. However, when CCR2-bearing blood monocytes are present, alveolar neutrophil accumulation is accelerated and drastically amplified. We suggest that this hitherto unrecognized cooperativity between monocytes and neutrophils contributes to the strong, coordinated leukocyte efflux in lung inflammation.  相似文献   

7.
Mucosal tissues require constant immune surveillance to clear harmful pathogens while maintaining tolerance to self Ags. Regulatory T cells (Tregs) play a central role in this process and expression of alpha(E)beta(7) has been reported to define a subset of Tregs with tropism for inflamed tissues. However, the signals responsible for recruiting Tregs to epithelial surfaces are poorly understood. We have isolated a subset of CCR10-expressing CD25+CD4+Foxp3+ Tregs with potent anti-inflammatory properties from chronically inflamed human liver. The CCR10+ Tregs were detected around bile ducts that expressed increased levels of the CCR10 ligand CCL28. CCL28 was secreted by primary human cholangiocytes in vitro in response to LPS, IL-1beta, or bile acids. Exposure of CCR10+ Tregs to CCL28 in vitro stimulated migration and adhesion to mucosal addressin cell adhesion molecule-1 and VCAM-1. Liver-derived CCR10+ Tregs expressed low levels of CCR7 but high levels of CXCR3, a chemokine receptor associated with infiltration into inflamed tissue and contained a subset of alpha(E)beta7(+) cells. We propose that CXCR3 promotes the recruitment of Tregs to inflamed tissues and CCR10 allows them to respond to CCL28 secreted by epithelial cells resulting in the accumulation of CCR10+ Tregs at mucosal surfaces.  相似文献   

8.
Adoptive transfer of adjuvant-induced arthritis was used in this study to examine local macrophages and dendritic cells (DCs) during T cell-mediated synovial inflammation. We studied the influx of CD11b+CD11c+ putative myeloid DCs and other non-lymphoid CD45+ cells into synovium-rich tissues (SRTs) of the affected hind paws in response to a pulse of autoreactive thoracic duct cells. Cells were prepared from the SRTs using a collagenase perfusion-digestion technique, thus allowing enumeration and phenotypic analysis by flow cytometry. Numbers of CD45+ cells increased during the first 6 days, with increases in CD45+MHC (major histocompatibility complex) II+ monocyte-like cells from as early as day 3 after transfer. In contrast, typical MHC II(-) monocytes, mainly of the CD4(-) subset, did not increase until 12 to 14 days after cell transfer, coinciding with the main influx of polymorphonuclear cells. By day 14, CD45+MHC IIhi cells constituted approximately half of all CD45+ cells in SRT. Most of the MHC IIhi cells expressed CD11c and CD11b and represented putative myeloid DCs, whereas only approximately 20% were CD163+ macrophages. Less than 5% of the MHC IIhi cells in inflamed SRT were CD11b(-), setting a maximum for any influx of plasmacytoid DCs. Of the putative myeloid DCs, a third expressed CD4 and both the CD4+ and the CD4(-) subsets expressed the co-stimulatory molecule CD172a. Early accumulation of MHC IIhiCD11c+ monocyte-like cells during the early phase of T cell-mediated inflammation, relative to typical MHC II(-) blood monocytes, suggests that recruited monocytes differentiate rapidly toward the DC lineage at this stage in the disease process. However, it is possible also that the MHC IIhiCD11c+ cells originate from a specific subset of DC-like circulating mononuclear cells.  相似文献   

9.
To understand the pathogenesis of organ-specific autoimmune disease requires an appreciation of how the T cell-mediated inflammation is targeted, and how the organ function is compromised. In this study, autoantibody was documented to influence both of these parameters by modulating the distribution of T cell-mediated inflammation. The murine autoimmune ovarian disease is induced by immunization with the ZP3330-342 peptide of the ovarian zona pellucida 3 glycoprotein, ZP3. Passively transferred or actively induced Ab to ZP3335-342 bound to the zona pellucida in the functional and degenerative ovarian follicles, and the ovaries remained histologically normal. Transfer of ZP3330-342 peptide-specific T cells targeted the degenerative follicles and spared the functional follicles, and the resultant interstitial oophoritis was associated with unimpaired ovarian function. Unexpectedly, the coexistence of ZP3330-342 peptide-specific T cells and zona-bound autoantibody led to a dramatic translocation of the ovarian inflammation to the growing and mature ovarian follicles, with destruction of the ovarian functional unit. Ab retargeted both Th1-induced mononuclear inflammation and Th2-induced eosinophilic inflammation, and retargeting was induced by murine and rat polyclonal Abs to multiple distinct native B cell determinants of the zona pellucida. Therefore, by reacting with the native determinants in tissue Ag, Ab alters the distribution of T cell-mediated inflammation, and results in destruction of the functional units of the target organ. We propose that this is a clinically important and previously unappreciated element of Ab action in autoimmune disease.  相似文献   

10.
Oxidative stress from ozone (O(3)) exposure augments airway neutrophil recruitment and chemokine production. We and others have shown that severe and sudden asthma is associated with airway neutrophilia, and that O(3) oxidative stress is likely to augment neutrophilic airway inflammation in severe asthma. However, very little is known about chemokines that orchestrate oxidative stress-induced neutrophilic airway inflammation in vivo. To identify these chemokines, three groups of BALB/c mice were exposed to sham air, 0.2 ppm O(3), or 0.8 ppm O(3) for 6 h. Compared with sham air, 0.8 ppm O(3), but not 0.2 ppm O(3), induced pronounced neutrophilic airway inflammation that peaked at 18 h postexposure. The 0.8 ppm O(3) up-regulated lung mRNA of CXCL1,2,3 (mouse growth-related oncogene-alpha and macrophage-inflammatory protein-2), CXCL10 (IFN-gamma-inducible protein-10), CCL3 (macrophage-inflammatory protein-1alpha), CCL7 (monocyte chemoattractant protein-3), and CCL11 (eotaxin) at 0 h postexposure, and expression of CXCL10, CCL3, and CCL7 mRNA was sustained 18 h postexposure. O(3) increased lung protein levels of CXCL10, CCL7, and CCR3 (CCL7R). The airway epithelium was identified as a source of CCL7. The role of up-regulated chemokines was determined by administering control IgG or IgG Abs against six murine chemokines before O(3) exposure. As expected, anti-mouse growth-related oncogene-alpha inhibited neutrophil recruitment. Surprisingly, Abs to CCL7 and CXCL10 also decreased neutrophil recruitment by 63 and 72%, respectively. These findings indicate that CCL7 and CXCL10, two chemokines not previously reported to orchestrate neutrophilic inflammation, play a critical role in mediating oxidative stress-induced neutrophilic airway inflammation. These observations may have relevance in induction of neutrophilia in severe asthma.  相似文献   

11.
PD-1, a member of the CD28 family of immune regulatory molecules, is expressed on activated T cells, interacts with its ligands, PD-L1/B7-H1 and PD-L2/B7-DC, on other cells, and delivers inhibitory signals to the T cell. We studied the role of this pathway in modulating autoreactive T cell responses in two models of myocarditis. In a CD8(+) T cell-mediated adoptive transfer model, we found that compared with Pd1(+/+) CD8(+) T cells, Pd1(-/-) CD8(+) T cells cause enhanced disease, with increased inflammatory infiltrate, particularly rich in neutrophils. Additionally, we show enhanced proliferation in vivo and enhanced cytotoxic activity of PD-1-deficient T lymphocytes against myocardial endothelial cells in vitro. In experimental autoimmune myocarditis, a disease model dependent on CD4(+) T cells, we show that mice lacking PD-1 develop enhanced disease compared with wild-type mice. PD-1-deficient mice displayed increased inflammation, enhanced serum markers of myocardial damage, and an increased infiltration of inflammatory cells, including CD8(+) T cells. Together, these studies show that PD-1 plays an important role in limiting T cell responses in the heart.  相似文献   

12.
Insulin-dependent diabetes mellitus (IDDM) is a polygenic disease caused by progressive autoimmune infiltration (insulitis) of the pancreatic islets of Langerhan, culminating in the destruction of insulin-producing beta cells. Genome scans of families with diabetes suggest that multiple loci make incremental contributions to disease susceptibility. However, only the IDDM1 locus is well characterized, at a molecular and functional level, as alleleic variants of the major histocompatibility complex (MHC) class II HLA-DQB1, DRB1, and DPB1 genes that mediate antigen presentation to T cells. In the nonobese diabetic (NOD) mouse model, the Idd1 locus was shown to be the orthologous MHC gene I-Ab. Inheritance of susceptibility alleles at IDDM1/Idd1 is insufficient for disease development in humans and NOD mice. However, the identities and functions of the remaining diabetes loci (Idd2-Idd19 in NOD mice) are largely undefined. A crucial limitation in previous genetic linkage studies of this disease has been reliance on a single complex phenotype-diabetes that displays low penetrance and is of limited utility for high-resolution genetic mapping. Using the NOD model, we have identified an early step in diabetes pathogenesis that behaves as a highly penetrant trait. We report that NOD-derived alleles at both the Idd5 and Idd13 loci regulate a T lymphocyte-dependent progression from a benign to a destructive stage of insulitis. Human chromosomal regions orthologous to the Idd5 and -13 intervals are also linked to diabetes risk, suggesting that conserved genes encoded at these loci are central regulators of disease pathogenesis. These data are the first to reveal a role for individual non-MHC Idd loci in a specific, critical step in diabetes pathogenesis-T cell recruitment to islet lesions driving destructive inflammation. Importantly, identification of intermediate phenotypes in complex disease pathogenesis provides the tools required to progress toward gene identification at these loci.  相似文献   

13.
In vivo T cell activation by anti-CD3 monoclonal antibody (mAb) results in intestinal damage characterized by loss of villi and epithelial cell apoptosis. The role of the increased interleukin (IL)-10 released during this process is not clear. We assessed the effects of IL-10 on T cell-induced mucosal damage in vivo using IL-10-deficient C57BL/6 [IL-10 knockout (KO)] mice. IL-10 KO and wild-type C57BL/6 mice were injected with anti-CD3 mAb and observed for diarrhea. Changes in serum cytokine levels were measured by ELISA. Histological changes and epithelial cell apoptosis were analyzed on hematoxylin- and eosin-stained tissue sections. Fas expression on intestinal epithelial cells was assessed by flow cytometry analysis of freshly isolated intestinal epithelial cells. Anti-CD3-treated IL-10 KO mice developed more severe diarrhea, a greater loss of intestinal villi, and an increase in the numbers of apoptotic cells in the crypt epithelium. This difference in IL-10 KO mice was associated with an increase in serum tumor necrosis factor-alpha and interferon-gamma levels and with an increase in Fas expression on fresh, isolated, small intestinal epithelial cells. In addition, the enhanced intestinal tissue damage induced by anti-CD3 in IL-10 KO mice was significantly diminished by treatment with recombinant murine IL-10. Therefore, the lack of IL-10 allowed for an increased T cell-induced intestinal tissue damage, and this was associated with an increase in T cell cytokine release and an increase in epithelial cell Fas expression.  相似文献   

14.
BDC2.5/nonobese diabetic (NOD) transgenic mice express a TCR from a diabetogenic T cell clone yet do not spontaneously develop diabetes at high incidence. Evidence exists showing that in the absence of endogenous TCR alpha-chain rearrangements this transgenic mouse spontaneously develops diabetes and that CTLA-4 negatively regulates diabetes onset. This strongly suggests that onset of diabetes in BDC2.5/NOD mice is governed by T cell regulation. We addressed the mechanism of immune regulation in BDC2.5/NOD mice. We find that activated spleen cells from young, but not old, BDC2.5/NOD mice are able to transfer diabetes to NOD-scid recipients. We have used anti-IL-10R to show that the failure of splenocytes from older mice to transfer diabetes is due to dominant regulation. We furthermore found that diabetes developed following anti-IL-10R treatment of 6-wk old BDC2.5/NOD mice indicating that endogenous IL-10 plays a key role in the regulation of diabetes onset in this transgenic mouse.  相似文献   

15.
Although it is widely accepted that there is a hierarchy in the susceptibility of different allografts to rejection, the mechanisms responsible are unknown. We show that the increased susceptibility of H-2K(b+) skin and islet allografts to rejection is not based on their ability to activate more H-2K(b)-specific T cells in vivo; heart allografts stimulate the activation and proliferation of many more H-2K(b)-specific T cells than either skin or islet allografts. Rejection of all three types of graft generate memory cells by 25 days posttransplant. These data provide evidence that neither tissue-specific Ags nor, surprisingly, the number of APCs carried in the graft dictate their susceptibility to T cell-mediated rejection and suggest that the graft microenvironment and size may play a more important role in determining the susceptibility of an allograft to rejection and resistance to tolerance induction.  相似文献   

16.
To determine whether T cells which produce large amounts of latent TGF-beta1 are capable of down-regulating autoimmune and allergic disease, myelin basic protein (MBP)-specific and ovalbumin (OVA)-specific BALB/c cloned Th1 cells were transduced with cDNA for murine TGF-beta1 by coculture with fibroblasts producing a genetically engineered retrovirus. The transduced MBP-specific Th1 cells were found to lose the capacity to provoke EAE in BALB/c mice, and to gain instead the ability to protect against EAE in (SJLxBALB/c) F1 mice immunized with proteolipid protein (PLP). This protective effect was not obtained with OVA-specific TGF-beta1 transduced Th1 cells. The transduced OVA-specific Th1 cells did protect against airway hyperreactivity induced by Th2-cell mediated responses to inhaled OVA. This effect was again antigen specific and it also could not be obtained with untransduced OVA-specific Th1 cells. In both cases these effects of antigen specific TGF-beta1 transduced T cells were nullified by administration of neutralizing anti-TGF-beta mAb. Thus, the antigen specificity of the cloned T cells allows the site-specific local delivery of therapeutic active TGF-beta1 to both Th1 and Th2 cell-mediated inflammatory infiltrates.  相似文献   

17.
CD4+ T cells, particularly Th2 cells, play a pivotal role in allergic airway inflammation. However, the requirements for interactions between CD4+ and CD8+ T cells in airway allergic inflammation have not been delineated. Sensitized and challenged OT-1 mice in which CD8+ T cells expressing the transgene for the OVA(257-264) peptide (SIINFEKL) failed to develop airway hyperresponsiveness (AHR), airway eosinophilia, Th2 cytokine elevation, or goblet cell metaplasia. OT-1 mice that received naive CD4+IL-4+ T cells but not CD4+IL-4- T cells before sensitization developed all of these responses to the same degree as wild-type mice. Moreover, recipients of CD4+IL-4+ T cells developed significant increases in the number of CD8+IL-13+ T cells in the lung, whereas sensitized OT-1 mice that received primed CD4+ T cells just before challenge failed to develop these responses. Sensitized CD8-deficient mice that received CD8+ T cells from OT-1 mice that received naive CD4+ T cells before sensitization increased AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged with allergen. In contrast, sensitized CD8-deficient mice receiving CD8+ T cells from OT-1 mice without CD4+ T cells developed reduced AHR and eosinophil numbers in bronchoalveolar lavage fluid when challenged. These data suggest that interactions between CD4+ and CD8+ T cells, in part through IL-4 during the sensitization phase, are essential to the development of CD8+IL-13+ T cell-dependent AHR and airway allergic inflammation.  相似文献   

18.
The magnitude and duration of CD8(+) T cell-mediated responses in the skin to hapten sensitization and challenge, contact hypersensitivity (CHS), is negatively regulated by CD4(+) T cells through an unknown mechanism. In this study we show that CD4(+) T cells restrict the development and expansion of hapten-specific CD8(+) T cells mediating CHS responses to 2,4-dinitrofluorobenzene. In the absence of CD4(+) T cells, high numbers of hapten-specific CD8(+) T cells producing IFN-gamma were detected in the skin-draining lymph nodes on day 5 postsensitization, and these numbers decreased slightly, but were maintained through day 9, correlating with the increased magnitude and duration of CHS responses observed in these mice. In the presence of CD4(+) T cells, the number of hapten-specific CD8(+) T cells producing IFN-gamma detected on day 5 postsensitization was lower and quickly fell to background levels by day 7. The limited development of effector CD8(+) T cells was associated with decreased numbers of hapten-presenting dendritic cells in the lymphoid priming site. This form of immunoregulation was absent after sensitization of Fas ligand-defective gld mice. Transfer of wild-type CD4(+) T cells to gld mice restored the negative regulation of CD8(+) T cell priming and the immune response to hapten challenge in gld-recipient mice. These results indicate that CD4(+) T cells restrict hapten-specific CD8(+) T cell priming for CHS responses through a Fas ligand-dependent mechanism.  相似文献   

19.
20.
CCL18 is a human chemokine secreted by monocytes and dendritic cells. The receptor for CCL18 is not yet known and the functions of this chemokine on immune cells are not fully elucidated. In this study, we describe that CCL18 is present in skin biopsies of atopic dermatitis (AD) patients but not in normal or psoriatic skin. CCL18 was specifically expressed by APCs in the dermis and by Langerhans and inflammatory dendritic epidermal cells in the epidermis. In addition, the serum levels of CCL18 and the percentages of CCL18-producing monocyte/macrophages and dendritic cells were significantly increased in AD patients compared with healthy controls. Furthermore, we demonstrate that CCL18 binds to CLA(+) T cells in peripheral blood of AD patients and healthy individuals and induces migration of AD-derived memory T cells in vitro and in human skin-transplanted SCID mice. These findings highlight a unique role of CCL18 in AD and reveal a novel function of this chemokine mediating skin homing of a subpopulation of human memory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号