首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.  相似文献   

2.
Spores of a Bacillus subtilis strain with a gerD deletion mutation (Delta gerD) responded much slower than wild-type spores to nutrient germinants, although they did ultimately germinate, outgrow, and form colonies. Spores lacking GerD and nutrient germinant receptors also germinated slowly with nutrients, as did Delta gerD spores in which nutrient receptors were overexpressed. The germination defect of Delta gerD spores was not suppressed by many changes in the sporulation or germination conditions. Germination of Delta gerD spores was also slower than that of wild-type spores with a pressure of 150 MPa, which triggers spore germination through nutrient receptors. Ectopic expression of gerD suppressed the slow germination of Delta gerD spores with nutrients, but overexpression of GerD did not increase rates of spore germination. Loss of GerD had no effect on spore germination induced by agents that do not act through nutrient receptors, including a 1:1 chelate of Ca2+ and dipicolinic acid, dodecylamine, lysozyme in hypertonic medium, a pressure of 500 MPa, and spontaneous germination of spores that lack all nutrient receptors. Deletion of GerD's putative signal peptide or change of its likely diacylglycerylated cysteine residue to alanine reduced GerD function. The latter findings suggest that GerD is located in a spore membrane, most likely the inner membrane, where the nutrient receptors are located. All these data suggest that, while GerD is not essential for nutrient germination, this protein has an important role in spores' rapid response to nutrient germinants, by either direct interaction with nutrient receptors or some signal transduction essential for germination.  相似文献   

3.
Germination of spores of Bacillus subtilis with dodecylamine   总被引:1,自引:0,他引:1  
AIMS: To determine the properties of Bacillus subtilis spores germinated with the alkylamine dodecylamine, and the mechanism of dodecylamine-induced spore germination. METHODS AND RESULTS: Spores of B. subtilis prepared in liquid medium were germinated efficiently by dodecylamine, while spores prepared on solid medium germinated more poorly with this agent. Dodecylamine germination of spores was accompanied by release of almost all spore dipicolinic acid (DPA), degradation of the spore's peptidoglycan cortex, release of the spore's pool of free adenine nucleotides and the killing of the spores. The dodecylamine-germinated spores did not initiate metabolism, did not degrade their pool of small, acid-soluble spore proteins efficiently and had a significantly lower level of core water than did spores germinated by nutrients. As measured by DPA release, dodecylamine readily induced germination of B. subtilis spores that: (a) were decoated, (b) lacked all the receptors for nutrient germinants, (c) lacked both the lytic enzymes either of which is essential for cortex degradation, or (d) had a cortex that could not be attacked by the spore's cortex-lytic enzymes. The DNA in dodecylamine-germinated wild-type spores was readily stained, while the DNA in dodecylamine-germinated spores of strains that were incapable of spore cortex degradation was not. These latter germinated spores also did not release their pool of free adenine nucleotides. CONCLUSIONS: These results indicate that: (a) the spore preparation method is very important in determining the rate of spore germination with dodecylamine, (b) wild-type spores germinated by dodecylamine progress only part way through the germination process, (c) dodecylamine may trigger spore germination by a novel mechanism involving the activation of neither the spore's nutrient germinant receptors nor the cortex-lytic enzymes, and (d) dodecylamine may trigger spore germination by directly or indirectly activating release of DPA from the spore core, through the opening of channels for DPA in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new insight into the mechanism of spore germination with the cationic surfactant dodecylamine, and also into the mechanism of spore germination in general. New knowledge of mechanisms to stimulate spore germination may have applied utility, as germinated spores are much more sensitive to processing treatments than are dormant spores.  相似文献   

4.
Different nutrient receptors varied in triggering germination of Bacillus subtilis spores with a pressure of 150 MPa, the GerA receptor being more responsive than the GerB receptor and even more responsive than the GerK receptor. This hierarchy in receptor responsiveness to pressure was the same as receptor responsiveness to a mixture of nutrients. The levels of nutrient receptors influenced rates of pressure germination, since the GerA receptor is more abundant than the GerB receptor and elevated levels of individual receptors increased spore germination by 150 MPa of pressure. However, GerB receptor variants with relaxed specificity for nutrient germinants responded as well as the GerA receptor to this pressure. Spores lacking dipicolinic acid did not germinate with this pressure, and pressure activation of the GerA receptor required covalent addition of diacylglycerol. However, pressure activation of the GerB and GerK receptors displayed only a partial (GerB) or no (GerK) diacylglycerylation requirement. These effects of receptor diacylglycerylation on pressure germination are similar to those on nutrient germination. Wild-type spores prepared at higher temperatures germinated more rapidly with a pressure of 150 MPa than spores prepared at lower temperatures; this was also true for spores with only one receptor, but receptor levels did not increase in spores made at higher temperatures. Changes in inner membrane unsaturated fatty acid levels, lethal treatment with oxidizing agents, or exposure to chemicals that inhibit nutrient germination had no major effect on spore germination by 150 MPa of pressure, except for strong inhibition by HgCl2.  相似文献   

5.
Spores of Bacillus species can remain dormant and resistant for years, but can rapidly ‘come back to life’ in germination triggered by agents, such as specific nutrients, and non‐nutrients, such as CaDPA, dodecylamine and hydrostatic pressure. Major events in germination include release of spore core monovalent cations and CaDPA, hydrolysis of the spore cortex peptidoglycan (PG) and expansion of the spore core. This leads to a well‐hydrated spore protoplast in which metabolism and macromolecular synthesis begin. Proteins essential for germination include the GerP proteins that facilitate germinant access to spores' inner layers, germinant receptors (GRs) that recognize and respond to nutrient germinants, GerD important in rapid GR‐dependent germination, SpoVA proteins important in CaDPA release and cortex‐lytic enzymes that degrade cortex PG. Rates of germination of individuals in spore populations are heterogeneous, and methods have been developed recently to simultaneously analyse the germination of multiple individual spores. Spore germination heterogeneity is due primarily to large variations in GR levels among individual spores, with spores that germinate extremely slowly and termed superdormant having very low GR levels. These and other aspects of spore germination will be discussed in this review, and major unanswered questions will also be discussed.  相似文献   

6.
Aims:  To determine roles of cortex lytic enzymes (CLEs) in Bacillus megaterium spore germination.
Methods and Results:  Genes for B. megaterium CLEs CwlJ and SleB were inactivated and effects of loss of one or both on germination were assessed. Loss of CwlJ or SleB did not prevent completion of germination with agents that activate the spore's germinant receptors, but loss of CwlJ slowed the release of dipicolinic acid (DPA). Loss of both CLEs also did not prevent release of DPA and glutamate during germination with KBr. However, cwlJ sleB spores had decreased viability, and could not complete germination. Loss of CwlJ eliminated spore germination with Ca2+ chelated to DPA (Ca-DPA), but loss of CwlJ and SleB did not affect DPA release in dodecylamine germination.
Conclusions:  CwlJ and SleB play redundant roles in cortex degradation during B. megaterium spore germination, and CwlJ accelerates DPA release and is essential for Ca-DPA germination. The roles of these CLEs are similar in germination of B. megaterium and Bacillus subtilis spores.
Significance and Impact of the Study:  These results indicate that redundant roles of CwlJ and SleB in cortex degradation during germination are similar in spores of Bacillus species; consequently, inhibition of these enzymes will prevent germination of Bacillus spores.  相似文献   

7.
AIMS: To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS: Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS: Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.  相似文献   

8.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

9.
Different nutrient receptors varied in triggering germination of Bacillus subtilis spores with a pressure of 150 MPa, the GerA receptor being more responsive than the GerB receptor and even more responsive than the GerK receptor. This hierarchy in receptor responsiveness to pressure was the same as receptor responsiveness to a mixture of nutrients. The levels of nutrient receptors influenced rates of pressure germination, since the GerA receptor is more abundant than the GerB receptor and elevated levels of individual receptors increased spore germination by 150 MPa of pressure. However, GerB receptor variants with relaxed specificity for nutrient germinants responded as well as the GerA receptor to this pressure. Spores lacking dipicolinic acid did not germinate with this pressure, and pressure activation of the GerA receptor required covalent addition of diacylglycerol. However, pressure activation of the GerB and GerK receptors displayed only a partial (GerB) or no (GerK) diacylglycerylation requirement. These effects of receptor diacylglycerylation on pressure germination are similar to those on nutrient germination. Wild-type spores prepared at higher temperatures germinated more rapidly with a pressure of 150 MPa than spores prepared at lower temperatures; this was also true for spores with only one receptor, but receptor levels did not increase in spores made at higher temperatures. Changes in inner membrane unsaturated fatty acid levels, lethal treatment with oxidizing agents, or exposure to chemicals that inhibit nutrient germination had no major effect on spore germination by 150 MPa of pressure, except for strong inhibition by HgCl2.  相似文献   

10.
Short exposures of Bacillus spores to nutrient germinants can commit spores to germinate when germinants are removed or their binding to the spores'' nutrient germinant receptors (GRs) is inhibited. Bacillus subtilis spores were exposed to germinants for various periods, followed by germinant removal to prevent further commitment. Release of spore dipicolinic acid (DPA) was then measured by differential interference contrast microscopy to monitor germination of multiple individual spores, and spores did not release DPA after 1 to 2 min of germinant exposure until ∼7 min after germinant removal. With longer germinant exposures, percentages of committed spores with times for completion of DPA release (Trelease) greater than the time of germinant removal (Tb) increased, while the time TlagTb, where Tlag represents the time when rapid DPA release began, was decreased but rapid DPA release times (ΔTrelease = TreleaseTlag) were increased; Factors affecting average Trelease values and the percentages of committed spores were germinant exposure time, germinant concentration, sporulation conditions, and spore heat activation, as previously shown for commitment of spore populations. Surprisingly, germination of spores given a 2nd short germinant exposure 30 to 45 min after a 1st exposure of the same duration was significantly higher than after the 1st exposure, but the number of spores that germinated in the 2nd germinant exposure decreased as the interval between germinant exposures increased up to 12 h. The latter results indicate that spores have some memory, albeit transient, of their previous exposure to nutrient germinants.  相似文献   

11.
Aims:  To determine the germination and inactivation of Bacillus cereus spores lacking various germination proteins using moderately high pressure (MHP) and heat.
Methods:  The inactivation and germination of wild-type B. cereus spores in buffer by MHP (150 MPa) at various temperatures, as well as the MHP inactivation and germination of B. cereus spores lacking individual germinant receptors and monovalent cation antiporters, was determined.
Results:  Loss of individual germinant receptors had no large effects on spore inactivation or germination, although germination of receptor-deficient spores was generally slightly decreased. Loss of the GerN in particular the GerN and GerT antiporters also decreased spore germination by MHP, especially at 40 and 50°C.
Conclusions:  Both inactivation and germination of B. cereus spores by MHP increased with rise of temperature; however, mutant strains lacking individual germinant receptor had similar levels of germination as compared to wild-type spores. To evaluate the role of germinant receptors in MHP, a strain lacking a large number of germinant receptors is needed.
Significance and Impact of the Study:  The results of this work may lead to a better understanding of how MHP causes germination of spores of B. cereus .  相似文献   

12.
As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores'' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores'' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca2+ divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine. The gerP spores exhibited no increased sensitivity to hypochlorite, suggesting that these spores have no significant coat defect. Overexpression of GRs in gerP spores did lead to faster germination via the overexpressed GR, but this was still slower than germination of comparable gerP+ spores. Unlike wild-type spores, for which maximal nutrient germinant concentrations were between 500 μM and 2 mM for l-alanine and ≤10 mM for l-valine, rates of gerP spore germination increased up to between 200 mM and 1 M l-alanine and 100 mM l-valine, and at 1 M l-alanine, the rates of germination of wild-type and gerP spores with or without all alanine racemases were almost identical. A high pressure of 150 MPa that triggers spore germination by activating GRs also triggered germination of wild-type and gerP spores identically. All these results support the suggestion that GerP proteins facilitate access of nutrient germinants to their cognate GRs in spores'' inner membrane.  相似文献   

13.
Spore germination   总被引:2,自引:0,他引:2  
The germination of dormant spores of Bacillus species is the first crucial step in the return of spores to vegetative growth, and is induced by nutrients and a variety of non-nutrient agents. Nutrient germinants bind to receptors in the spore's inner membrane and this interaction triggers the release of the spore core's huge depot of dipicolinic acid and cations, and replacement of these components by water. These latter events trigger the hydrolysis of the spore's peptidoglycan cortex by either of two redundant enzymes in B. subtilis, and completion of cortex hydrolysis and subsequent germ cell wall expansion allows full spore core hydration and resumption of spore metabolism and macromolecular synthesis.  相似文献   

14.
The kinetic parameters of the release of Ca(2+)-dipicolinic acid (CaDPA) during germination of spore populations and multiple individual spores of Bacillus subtilis strains with major alterations in the structure of the spore peptidoglycan (PG) cortex or lacking one or both of the two redundant enzymes involved in cortex hydrolysis (cortex-lytic enzymes [CLEs]) were determined. The lack of the CLE CwlJ greatly slowed CaDPA release with a germinant receptor (GR)-dependent germinant, l-valine, or a non-GR-dependent germinant, dodecylamine. The absence of the cortex-specific PG modification muramic acid-δ-lactam also increased the time needed for full CaDPA release during germination with both types of germinants. In contrast, increased cortex PG cross-linking was associated with faster times for initiation of CaDPA release with both l-valine and dodecylamine but not with faster CaDPA release once this release had been initiated. These data suggest that the precise structure of the spore cortex plays a significant role in determining the timing and the rate of CaDPA release during B. subtilis spore germination and, further, that this effect is independent of effects of GRs.  相似文献   

15.
Dormant Bacillus subtilis spores can be induced to germinate by nutrients, as well as by nonmetabolizable chemicals, such as a 1:1 chelate of Ca(2+) and dipicolinic acid (DPA). Nutrients bind receptors in the spore, and this binding triggers events in the spore core, including DPA excretion and rehydration, and also activates hydrolysis of the surrounding cortex through mechanisms that are largely unknown. As Ca(2+)-DPA does not require receptors to induce spore germination, we asked if this process utilizes other proteins, such as the putative cortex-lytic enzymes SleB and CwlJ, that are involved in nutrient-induced germination. We found that Ca(2+)-DPA triggers germination by first activating CwlJ-dependent cortex hydrolysis; this mechanism is different from nutrient-induced germination where cortex hydrolysis is not required for the early germination events in the spore core. Nevertheless, since nutrients can induce release of the spore's DPA before cortex hydrolysis, we examined if the DPA excreted from the core acts as a signal to activate CwlJ in the cortex. Indeed, endogenous DPA is required for nutrient-induced CwlJ activation and this requirement was partially remedied by exogenous Ca(2+)-DPA. Our findings thus define a mechanism for Ca(2+)-DPA-induced germination and also provide the first definitive evidence for a signaling pathway that activates cortex hydrolysis in response to nutrients.  相似文献   

16.
Superdormant spores of Bacillus subtilis and Bacillus megaterium were isolated in 4 to 12% yields following germination with high nutrient levels that activated one or two germinant receptors. These superdormant spores did not germinate with the initial nutrients or those that stimulated other germinant receptors, and the superdormant spores'' defect was not genetic. The superdormant spores did, however, germinate with Ca2+-dipicolinic acid or dodecylamine. Although these superdormant spores did not germinate with high levels of nutrients that activated one or two nutrient germinant receptors, they germinated with nutrient mixtures that activated more receptors, and using high levels of nutrient mixtures activating more germinant receptors decreased superdormant spore yields. The use of moderate nutrient levels to isolate superdormant spores increased their yields; the resultant spores germinated poorly with the initial moderate nutrient concentrations, but they germinated well with high nutrient concentrations. These findings suggest that the levels of superdormant spores in populations depend on the germination conditions used, with fewer superdormant spores isolated when better germination conditions are used. These findings further suggest that superdormant spores require an increased signal for triggering spore germination compared to most spores in populations. One factor determining whether a spore is superdormant is its level of germinant receptors, since spore populations with higher levels of germinant receptors yielded lower levels of superdormant spores. A second important factor may be heat activation of spore populations, since yields of superdormant spores from non-heat-activated spore populations were higher than those from optimally activated spores.Spores of various Bacillus species are formed in sporulation and are metabolically dormant and very resistant to environmental stress factors (21, 37). While such spores can remain in this dormant, resistant state for long periods, they can return to life rapidly through the process of germination, during which the spore''s dormancy and extreme resistance are lost (36). Spore germination has long been of intrinsic interest, and continues to attract applied interest, because (i) spores of a number of Bacillus species are major agents of food spoilage and food-borne disease and (ii) spores of Bacillus anthracis are a major bioterrorism agent. Since spores are much easier to kill after they have germinated, it would be advantageous to trigger germination of spores in foods or the environment and then readily inactivate the much less resistant germinated spores. However, this simple strategy has been largely nullified because germination of spore populations is heterogeneous, with some spores, often called superdormant spores, germinating extremely slowly and potentially coming back to life long after treatments are applied to inactivate germinated spores (8, 9, 16). The concern over superdormant spores in populations also affects decisions such as how long individuals exposed to B. anthracis spores should continue to take antibiotics, since spores could remain dormant in an individual for long periods and then germinate and cause disease (3, 11).In many species, spore germination can be increased by a prior activation step, generally a sublethal heat treatment, although the changes taking place during heat activation are not known (16). Spore germination in Bacillus species is normally triggered by nutrients such as glucose, amino acids, or purine ribosides (27, 36). These agents bind to germinant receptors located in the spore''s inner membrane that are specific for particular nutrients. In Bacillus subtilis, the GerA receptor responds to l-alanine or l-valine, while the GerB and GerK receptors act cooperatively to respond to a mixture of l-asparagine (or l-alanine), d-glucose, d-fructose and K+ ions (AGFK [or Ala-GFK]) (1, 27, 36). There are even more functional germinant receptors in Bacillus megaterium spores, and these respond to d-glucose, l-proline, l-leucine, l-valine, or even salts, such as KBr (6). Glucose appears to trigger germination of B. megaterium spores through either of two germinant receptors, GerU or GerVB, while l-proline triggers germination through only the GerVB receptor, and KBr germination is greatly decreased by the loss of either GerU or GerVB (6). Nutrient binding to the germinant receptors triggers the release of small molecules from the spore core, most notably the huge depot (∼10% of spore dry weight) of pyridine-2,6-dicarboxylic acid (dipicolinic acid [DPA]) present in spores predominantly as a 1:1 diluted chelate with Ca2+ (Ca-DPA) (35, 36). Ca-DPA release then triggers the activation of one of two redundant cortex lytic enzymes (CLEs) that degrade the spore''s peptidoglycan cortex, and cortex degradation completes spore germination and allows progression into outgrowth and then vegetative growth (27, 33, 36).Spore germination can also be triggered by nonnutrient agents, including Ca-DPA and cationic surfactants (27, 33, 36). With B. subtilis spores, Ca-DPA triggers germination by activating one particular CLE, termed CwlJ, and bypasses the spore''s germinant receptors. Germination by the cationic surfactant dodecylamine also bypasses the germinant receptors, and this agent appears to release small molecules including Ca-DPA from the spore core either by opening a normal channel in the spore''s inner membrane for Ca-DPA and other small molecules or by creating such a channel (31, 38, 39).Almost all work on the specifics of the germination of spores of Bacillus species has focused on the majority of spores in populations, and little detailed attention has been paid to that minority of spores that either fail to germinate or germinate extremely slowly. However, it is these latter spores that are most important in unraveling the cause of superdormancy and perhaps suggesting a means to germinate and thus easily inactivate such superdormant spores. Consequently, we have undertaken the task of isolating superdormant spores from spore populations, using buoyant density centrifugation to separate dormant spores from germinated spores. The properties of these purified superdormant spores were then studied, and this information has suggested some reason(s) for spore superdormancy.  相似文献   

17.
AIMS: To elucidate the factors that determine the rate of germination of Bacillus subtilis spores with very high pressure (VHP) and the mechanism of VHP germination. METHODS AND RESULTS: Spores of B. subtilis were germinated rapidly with a VHP of 500 MPa at 50 degrees C. This VHP germination did not require the spore's nutrient-germinant receptors, as found previously, and did not require diacylglycerylation of membrane proteins. However, the spore's pool of dipicolinic acid (DPA) was essential. Either of the two redundant enzymes that degrade the spore's peptidoglycan cortex, and thus allow completion of spore germination, was essential for completion of VHP germination. However, neither of these enzymes was needed for DPA release triggered by VHP treatment. Completion of spore germination as well as DPA release with VHP had an optimum temperature of approx. 60 degrees C, in contrast to an optimum temperature of 40 degrees C for germination with the moderately high pressure of 150 MPa. The rate of spore germination by VHP decreased approx. fourfold when the sporulation temperature increased from 23 degrees C to 44 degrees C, and decreased twofold when 1 mol l(-1) salt was present in sporulation. However, large variations in levels of unsaturated fatty acids in the spore's inner membranes did not affect rates of VHP germination. Complete germination of spores by VHP was not inhibited significantly by killing of spores with several oxidizing agents, and was not inhibited by ethanol, octanol or o-chlorophenol at concentrations that abolish nutrient germination. Completion of spore germination by VHP was also inhibited by Hg(2+), but this ion did not inhibit DPA release caused by VHP. In contrast, dodecylamine, a surfactant that can trigger spore germination, strongly inhibited DPA release caused by VHP treatment. CONCLUSIONS: VHP does not cause spore germination by acting upon the spore's nutrient-germinant receptors, but by directly causing DPA release. This DPA release then leads to subsequent completion of germination. VHP likely acts on the spore's inner membrane to cause DPA release, targeting either a membrane protein or the membrane itself. However, the precise identity of this target is not yet clear. SIGNIFICANCE AND IMPACT OF THE STUDY: There is significant interest in the use of VHP to eliminate or reduce levels of bacterial spores in foods. As at least partial spore germination by pressure is almost certainly essential for subsequent spore killing, knowledge of factors involved and the mechanism of VHP germination are crucial to the understanding of spore killing by VHP. This work provides new insight into factors that can affect the rate of B. subtilis spore germination by VHP, and into the mechanism of VHP germination itself.  相似文献   

18.
Clostridium perfringens food poisoning is caused by type A isolates carrying a chromosomal enterotoxin (cpe) gene (C-cpe), while C. perfringens-associated non-food-borne gastrointestinal (GI) diseases are caused by isolates carrying a plasmid-borne cpe gene (P-cpe). C. perfringens spores are thought to be the important infectious cell morphotype, and after inoculation into a suitable host, these spores must germinate and return to active growth to cause GI disease. We have found differences in the germination of spores of C-cpe and P-cpe isolates in that (i) while a mixture of L-asparagine and KCl was a good germinant for spores of C-cpe and P-cpe isolates, KCl and, to a lesser extent, L-asparagine triggered spore germination in C-cpe isolates only; and (ii) L-alanine or L-valine induced significant germination of spores of P-cpe but not C-cpe isolates. Spores of a gerK mutant of a C-cpe isolate in which two of the proteins of a spore nutrient germinant receptor were absent germinated slower than wild-type spores with KCl, did not germinate with L-asparagine, and germinated poorly compared to wild-type spores with the nonnutrient germinants dodecylamine and a 1:1 chelate of Ca2+ and dipicolinic acid. In contrast, spores of a gerAA mutant of a C-cpe isolate that lacked another component of a nutrient germinant receptor germinated at the same rate as that of wild-type spores with high concentrations of KCl, although they germinated slightly slower with a lower KCl concentration, suggesting an auxiliary role for GerAA in C. perfringens spore germination. In sum, this study identified nutrient germinants for spores of both C-cpe and P-cpe isolates of C. perfringens and provided evidence that proteins encoded by the gerK operon are required for both nutrient-induced and non-nutrient-induced spore germination.  相似文献   

19.
Fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) has been used to report on protein mobility in single spores. Proteins found in dormant Bacillus spores are not mobile; however, mobility is restored when germination occurs and the core rehydrates. Spores of a cwlD mutant, in which the cortex is resistant to hydrolysis, are able to complete the earliest stages of germination in response to a specific germinant stimulus; in these circumstances, the protein in the spore remains immobile. Therefore, the earliest stages of spore germination, including loss of resistance to extreme heat and the complete release of the spore component dipicolinic acid, are achieved without the restoration of protein mobility.  相似文献   

20.
Spores of Bacillus species can remain in their dormant and resistant states for years, but exposure to agents such as specific nutrients can cause spores'' return to life within minutes in the process of germination. This process requires a number of spore-specific proteins, most of which are in or associated with the inner spore membrane (IM). These proteins include the (i) germinant receptors (GRs) that respond to nutrient germinants, (ii) GerD protein, which is essential for GR-dependent germination, (iii) SpoVA proteins that form a channel in spores'' IM through which the spore core''s huge depot of dipicolinic acid is released during germination, and (iv) cortex-lytic enzymes (CLEs) that degrade the large peptidoglycan cortex layer, allowing the spore core to take up much water and swell, thus completing spore germination. While much has been learned about nutrient germination, major questions remain unanswered, including the following. (i) How do nutrient germinants penetrate through spores'' outer layers to access GRs in the IM? (ii) What happens during the highly variable and often long lag period between the exposure of spores to nutrient germinants and the commitment of spores to germinate? (iii) What do GRs and GerD do, and how do these proteins interact? (iv) What is the structure of the SpoVA channel in spores'' IM, and how is this channel gated? (v) What is the precise state of the spore IM, which has a number of novel properties even though its lipid composition is very similar to that of growing cells? (vi) How is CLE activity regulated such that these enzymes act only when germination has been initiated? (vii) And finally, how does the germination of spores of clostridia compare with that of spores of bacilli?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号