首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

2.
A new model for the interaction of dystrophin with F-actin   总被引:10,自引:1,他引:9       下载免费PDF全文
The F-actin binding and cross-linking properties of skeletal muscle dystrophin-glycoprotein complex were examined using high and low speed cosedimentation assays, microcapillary falling ball viscometry, and electron microscopy. Dystrophin-glycoprotein complex binding to F-actin saturated near 0.042 +/- 0.005 mol/ mol, which corresponds to one dystrophin per 24 actin monomers. Dystrophin-glycoprotein complex bound to F-actin with an average apparent Kd for dystrophin of 0.5 microM. These results demonstrate that native, full-length dystrophin in the glycoprotein complex binds F-actin with some properties similar to those measured for several members of the actin cross-linking super- family of proteins. However, we failed to observe dystrophin- glycoprotein complex-induced cross-linking of F-actin by three different methods, each positively controlled with alpha-actinin. Furthermore, high speed cosedimentation analysis of dystrophin- glycoprotein complex digested with calpain revealed a novel F-actin binding site located near the middle of the dystrophin rod domain. Recombinant dystrophin fragments corresponding to the novel actin binding site and the first 246 amino acids of dystrophin both bound F- actin but with significantly lower affinity and higher capacity than was observed with purified dystrophin-glycoprotein complex. Finally, dystrophin-glycoprotein complex was observed to significantly slow the depolymerization of F-actin, Suggesting that dystrophin may lie along side an actin filament through interaction with multiple actin monomers. These data suggest that although dystrophin is most closely related to the actin cross-linking superfamily based on sequence homology, dystrophin binds F-actin in a manner more analogous to actin side-binding proteins.  相似文献   

3.
An actin-interacting heptapeptide in the cofilin sequence   总被引:7,自引:0,他引:7  
Cofilin, a 21-kDa actin-binding protein, has a hexapeptide sequence DAIKKK which is identical to the N-terminal portion (residues 2-7) of tropomyosin. The synthetic heptapeptide, DAIKKKL, corresponding to residues 122-128 of cofilin, inhibited the binding of cofilin to F-actin in a dose-dependent manner. The heptapeptide cosedimented with F-actin, decreased the fluorescence intensity of pyrene-labeled F-actin, and increased the rate of polymerization of G-actin. The hexapeptides, DIKKKL and DAIKKL, also inhibited the binding of cofilin to F-actin and affected the fluorescence intensity of pyrene-labeled F-actin and the rate of actin polymerization, like the heptapeptide. However, their effects were weaker than those of the heptapeptide. Moreover, the pentapeptide, DIKKL, had little or no effect. These results suggest that the heptapeptide sequence is specific for the interaction with actin and, therefore, may constitute part of the actin-binding domain of cofilin.  相似文献   

4.
Dystrophin forms part of a vital link between actin cytoskeleton and extracellular matrix via the transmembrane adhesion receptor dystroglycan. Dystrophin and its autosomal homologue utrophin interact with beta-dystroglycan via their highly conserved C-terminal cysteine-rich regions, comprising the WW domain (protein-protein interaction domain containing two conserved tryptophan residues), EF hand and ZZ domains. The EF hand region stabilizes the WW domain providing the main interaction site between dystrophin or utrophin and dystroglycan. The ZZ domain, containing a predicted zinc finger motif, stabilizes the WW and EF hand domains and strengthens the overall interaction between dystrophin or utrophin and beta-dystroglycan. Using bacterially expressed ZZ domain, we demonstrate a conformational effect of zinc binding to the ZZ domain, and identify two zinc-binding regions within the ZZ domain by SPOTs overlay assays. Epitope mapping of the dystrophin ZZ domain was carried out with new monoclonal antibodies by ELISA, overlay assay and immunohistochemistry. One monoclonal antibody defined a discrete region of the ZZ domain that interacts with beta-dystroglycan. The epitope was localized to the conformationally sensitive second zinc-binding site in the ZZ domain. Our results suggest that residues 3326-3332 of dystrophin form a crucial part of the contact region between dystrophin and beta-dystroglycan and provide new insight into ZZ domain organization and function.  相似文献   

5.
6.
Evidence that a 27-residue sequence is the actin-binding site of ABP-120   总被引:12,自引:0,他引:12  
Proteolysis experiments of ABP-120 from Dictyostelium discoideum have previously demonstrated that removal of residues 89-115 from a tryptic peptide which retains actin binding activity, abolishes actin binding (Bresnick, A. R., Warren, V., and Condeelis, J. (1990) J. Biol. Chem. 265, 9236-9240). Antibodies made against a synthetic peptide of this 27-amino acid sequence (27-mer) specifically immunoprecipitate native ABP-120 from Dictyostelium high speed supernatants, demonstrating that the 27-mer sequence is on the surface of the molecule as expected for an active site. ABP-120 is inhibited in its binding to F-actin by Fab' fragments of the anti-27-mer IgG. Half-maximal inhibition occurs at an approximate molar ratio of 7 Fab' fragments/ABP-120 monomer. Viscoelastic measurements indicate that ABP-120 forms fewer cross-links with F-actin in the presence of the 27-mer synthetic peptide than in its absence. In F-actin cosedimentation assays, the binding of ABP-120 to actin is inhibited by the 27-mer synthetic peptide. Furthermore, the 27-mer synthetic peptide cosediments with F-actin, whereas a control hydrophobic peptide and a synthetic peptide of residues 69-88 of ABP-120 do not cosediment with F-actin. These observations suggest a direct involvement of the 27-mer sequence in the actin binding activity of ABP-120.  相似文献   

7.
A synthetic peptide of the N-terminus of actin interacts with myosin   总被引:3,自引:0,他引:3  
J E Van Eyk  R S Hodges 《Biochemistry》1991,30(50):11676-11682
Research reported from numerous laboratories suggested that the N-terminal region of actin contained one of the binding sites between actin and myosin. A synthetic peptide corresponding to residues 1-28 of skeletal actin was prepared by solid-phase peptide methodology. The formation of a complex between this peptide and myosin subfragment 1 (S1) was demonstrated by high-performance size-exclusion chromatography (pH 6.8). The actin peptide precipitated S1 at higher pH (7.4-8.2) but remained soluble when bound to heavy meromyosin (HMM) or S1 in the presence of F-actin. The actin peptide 1-28 bound to S1 and HMM and activated the ATPase activity in a manner similar to that of F-actin. These results demonstrate that the N-terminal region of actin, residues 1-28, contains a biologically important binding site for myosin.  相似文献   

8.
Utrophin lacks the rod domain actin binding activity of dystrophin   总被引:2,自引:0,他引:2  
We previously identified a cluster of basic spectrin-like repeats in the dystrophin rod domain that binds F-actin through electrostatic interactions (Amann, K. J., Renley, B. A., and Ervasti, J. M. (1998) J. Biol. Chem. 273, 28419-28423). Because of the importance of actin binding to the presumed physiological role of dystrophin, we sought to determine whether the autosomal homologue of dystrophin, utrophin, shared this rod domain actin binding activity. We therefore produced recombinant proteins representing the cluster of basic repeats of the dystrophin rod domain (DYSR11-17) or the homologous region of the utrophin rod domain (UTROR11-16). Although UTROR11-16 is 64% similar and 41% identical to DYSR11-17, UTROR11-16 (pI = 4. 86) lacks the basic character of the repeats found in DYSR11-17 (pI = 7.44). By circular dichroism, gel filtration, and sedimentation velocity analysis, we determined that each purified recombinant protein had adopted a stable, predominantly alpha-helical fold and existed as a highly soluble monomer. DYSR11-17 bound F-actin with an apparent K(d) of 7.3 +/- 1.3 microM and a molar stoichiometry of 1:5. Significantly, UTROR11-16 failed to bind F-actin at concentrations as high as 100 microM. We present these findings as further support for the electrostatic nature of the interaction of the dystrophin rod domain with F-actin and suggest that utrophin interacts with the cytoskeleton in a manner distinct from dystrophin.  相似文献   

9.
We have previously demonstrated that the two heads of chicken gizzard heavy meromyosin (HMM) in a rigor complex with rabbit skeletal F-actin could be cross-linked by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Here, we report the location of the cross-linked sites in the amino acid sequence of the HMM heavy chain. One of the cross-linked residues was identified as Glu-168 by sequencing the CN1.CN6 cross-linked peptide containing residues 1-77 (CN1) and 164-203 (CN6). This site is located close to the ATP-binding site of HMM. Since the other site was further into the amino acid sequence of CN1, another cross-linked peptide corresponding to residues 53-66 and 145-182 was isolated from the 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-treated acto-tryptic gizzard HMM digested further by other proteolytic enzymes. The amino acid sequence of this peptide and its cyanogen bromide fragment indicated that the cross-linking occurred between Glu-168 and Lys-65. Our results suggests that these two amino acid side chains are in contact with each other in the acto-gizzard HMM rigor complex and participate in the electrostatic interaction between the two HMM heads bound to F-actin. Based on the head-to-head contact, we propose a three-dimensional model for the attachment of gizzard HMM heads to F-actin.  相似文献   

10.
Two actin-binding sites have been identified on human dystrophin by proton NMR spectroscopy of synthetic peptides corresponding to defined regions of the polypeptide sequence. These are Actin-Binding Site 1 (ABS1) located at residues 17-26 and Actin-Binding Site 2 (ABS2) in the region of residues 128-156. Using defined fragments of the actin amino acid sequence, ABS1 has been shown to bind to actin in the region represented by residues 83-117 and ABS2 to the C-terminal region represented by residues 350-375. These dystrophin-binding sites lie on the exposed domain in the actin filament.  相似文献   

11.
Bone sialoprotein (BSP) is an anionic phosphorylated glycoprotein that is expressed almost exclusively in mineralized tissues and has been shown to be a potent nucleator of hydroxyapatite formation. The binding of BSP to collagen is thought to be important for the initiation of bone mineralization and in the adhesion of bone cells to the mineralized matrix. Using a solid phase assay, we have investigated the interaction between BSP and collagen. Initial studies showed that raising the ionic strength, decreasing the pH below 7, or introducing divalent cations diminishes but does not abolish the binding of BSP to collagen, indicating that the interaction is only partly electrostatic in nature. Both bone-extracted and recombinant (r)BSP exhibited similar binding affinities, indicating that post-translational modifications are not critical for binding. To identify the collagen-binding domain, recombinant peptides of BSP were studied. Peptide rBSP-(1-100) binds to type I collagen with an affinity similar to that of full-length rBSP, whereas peptides containing the sequences 99-201 or 200-301 do not bind. Further studies showed that rBSP-(1-75) competitively inhibits the binding of rBSP-(1-100), whereas rBSP-(21-100) inhibits binding to a lesser extent, and rBSP-(43-100) does not inhibit binding. These results suggest that the collagen-binding site of rat BSP is within the sequence 21-42, with residues N-terminal of this region likely also involved. This site was confirmed by the demonstration of collagen-binding activity of a synthetic peptide corresponding to residues 19-46. The collagen-binding domain, which is highly conserved among species, is enriched in hydrophobic residues and lacks acidic residues. We conclude that residues 19-46 of BSP represent a novel collagen-binding site.  相似文献   

12.
The EGF receptor is an actin-binding protein   总被引:16,自引:0,他引:16       下载免费PDF全文
In a number of recent studies it has been shown that in vivo part of the EGF receptor (EGFR) population is associated to the actin filament system. In this paper we demonstrate that the purified EGFR can be cosedimented with purified filamentous actin (F-actin) indicating a direct association between EGFR and actin. A truncated EGFR, previously shown not to be associated to the cytoskeleton, was used as a control and this receptor did not cosediment with actin filaments. Determination of the actin-binding domain of the EGFR was done by measuring competition of either a polyclonal antibody or synthetic peptides on EGFR cosedimentation with F-actin. A synthetic peptide was made homologous to amino acid residues 984-996 (HL-33) of the EGFR which shows high homology with the actin-binding domain of Acanthamoeba profilin. A polyclonal antibody raised against HL-33 was found to prevent cosedimentation of EGFR with F-actin. This peptide HL-33 was shown to bind directly to actin in contrast with a synthetic peptide homologous to residues 1001-1013 (HL-34). During cosedimentation, HL-33 competed for actin binding of the EGFR and HL-34 did not, indicating that the EGFR contains one actin-binding site. These results demonstrate that the EGFR is an actin-binding protein which binds to actin via a domain containing amino acids residues 984-996.  相似文献   

13.
The N-terminal head domain of human dystrophin has been expressed in soluble form and high yield in E. coli, allowing us to test the previously unconfirmed assumption that dystrophin binds actin. DMD246, the first 246 amino acid residues of dystrophin, binds F-actin in a strongly co-operative manner with a Hill constant of 3.5, but does not bind G-actin. Dystrophin heads are thus functionally competent actin-binding proteins. This result opens the way to identifying critical residues in the actin-binding site and encourages us that the other domains of dystrophin might also be treated as functionally autonomous modules, accessible to a similar approach.  相似文献   

14.
Dystrophin has been shown to be associated in cells with actin bundles. Dys-246, an N-terminal recombinant protein encoding the first 246 residues of dystrophin, includes two calponin-homology (CH) domains, and is similar to a large class of F-actin cross-linking proteins including alpha-actinin, fimbrin, and spectrin. It has been shown that expression or microinjection of amino-terminal fragments of dystrophin or the closely related utrophin resulted in the localization of these protein domains to actin bundles. However, in vitro studies have failed to detect any bundling of actin by either intact dystrophin or Dys-246. We show here that the structure of F-actin can be modulated so that there are two modes of Dys-246 binding, from bundling actin filaments to only binding to single filaments. The changes in F-actin structure that allow Dys-246 to bundle filaments are induced by covalent modification of Cys-374, proteolytic cleavage of F-actin's C-terminus, mutation of yeast actin's N-terminus, and different buffers. The present results suggest that F-actin's structural state can have a large influence on the nature of actin's interaction with other proteins, and these different states need to be considered when conducting in vitro assays.  相似文献   

15.
The carboxy-terminal region of dystrophin has been suggested to be crucially important for its function to prevent muscle degeneration. We have previously shown that this region is the locus that interacts with the sarcolemmal glycoprotein complex, which mediates membrane anchoring of dystrophin, as well as with the cytoplasmic peripheral membrane protein, A0 and beta 1-syntrophin (Suzuki, A., M. Yoshida, K. Hayashi, Y. Mizuno, Y. Hagiwara, and E. Ozawa. 1994. Eur. J. Biochem. 220:283- 292). In this work, by using the overlay assay technique developed previously, we further analyzed the dystrophin-syntrophin/A0 interaction. Two forms of mammalian syntrophin, alpha 1- and beta 1- syntrophin, were found to bind to very close but discrete regions on the dystrophin molecule. Their binding sites are located at the vicinity of the glycoprotein-binding site, and correspond to the amino acid residues encoded by exons 73-74 which are alternatively spliced out in some isoforms. This suggests that the function of syntrophin is tightly linked to the functional diversity among dystrophin isoforms. Pathologically, it is important that the binding site for alpha 1- syntrophin, which is predominantly expressed in skeletal muscle, coincides with the region whose deletion was suggested to result in a severe phenotype. In addition, A0, a minor component of dystrophin- associated proteins with a molecular mass of 94 kD which is immunochemically related to syntrophin, binds to the same site as beta 1-syntrophin. Finally, based on our accumulated evidence, we propose a revised model of the domain organization of dystrophin from the view point of protein-protein interactions.  相似文献   

16.
Actin-binding proteins are conserved from slime molds to man   总被引:5,自引:0,他引:5  
DNA clones encoding the actin-binding proteins alpha-actinin and severin from Dictyostelium discoideum were isolated and sequenced. Comparisons of the deduced amino acid sequences with proteins from other species showed striking similarities at distinct regions. The F-actin cross-linking molecule alpha-actinin carries two characteristic EF-hand structures highly homologous to the Ca2+-binding loops of proteins from the calmodulin superfamily. An N-terminal region that is conserved in alpha-actinin from D. discoideum and vertebrates is also related to parts of the dystrophin sequence and might represent the F-actin binding site. Severin, gelsolin, villin, and fragmin share homologous sequences that are believed to participate in the severing activity of these proteins.  相似文献   

17.
The N terminus of skeletal myosin light chain 1 and the cardiomyopathy loop of human cardiac myosin have been shown previously to bind to actin in the presence and absence of tropomyosin (Patchell, V. B., Gallon, C. E., Hodgkin, M. A., Fattoum, A., Perry, S. V., and Levine, B. A. (2002) Eur. J. Biochem. 269, 5088-5100). We have extended this work and have shown that segments corresponding to other regions of human cardiac beta-myosin, presumed to be sites of interaction with F-actin (residues 554-584, 622-646, and 633-660), likewise bind independently to actin under similar conditions. The binding to F-actin of a peptide spanning the minimal inhibitory segment of human cardiac troponin I (residues 134-147) resulted in the dissociation from F-actin of all the myosin peptides bound to it either individually or in combination. Troponin C neutralized the effect of the inhibitory peptide on the binding of the myosin peptides to F-actin. We conclude that the binding of the inhibitory region of troponin I to actin, which occurs during relaxation in muscle when the calcium concentration is low, imposes conformational changes that are propagated to different locations on the surface of actin. We suggest that the role of tropomyosin is to facilitate the transmission of structural changes along the F-actin filament so that the monomers within a structural unit are able to interact with myosin.  相似文献   

18.
A synthetic nonapeptide, Val-Leu-Ile-Arg-Ile-Met-Val-Ser-Arg, corresponding to residues 286-294 of annexin-II tetramer (A-IIt), was shown to completely inhibit the Ca(2+)-dependent bundling of F-actin by this protein. The inhibitory effect of the nonapeptide required preincubation with F-actin and was reversed by the addition of excess A-IIt. Kinetic analysis suggested that the nonapeptide reduced the K(0.5) but not the Vmax of F-actin bundling. In contrast, addition of excess nonapeptide to A-IIt-bundled F-actin did not reverse F-actin bundle formation. Although the nonapeptide produced a dose-dependent inhibition of A-IIt-dependent F-actin bundling, the binding of A-IIt to F-actin was not affected. These results identify a domain of A-IIt that is involved in the bundling activity of the protein and suggest that this domain binds transiently with F-actin, resulting in activation of the bundling activity of A-IIt.  相似文献   

19.
Using a nonpolymerizable form of tropomyosin (NPTM) we have investigated the interactions between the T1 (residues 1-158) and T2 (residues 159-259) regions of troponin T and the other components of the thin filament at 50 mM KCl +/- Ca2+. Under these conditions the binding of NPTM to F-actin is fully restored by whole troponin (+/- Ca2+), and in each case, retains a residual degree of cooperativity as demonstrated by Scatchard and Hill plots. Fragment T2 alone had a small inductive effect on the interaction of NPTM with F-actin. In the presence of troponin I, this interaction is increased to a level which exceeds that observed with either component alone. The effects of T2 and troponin I are moderately (-Ca2+) and markedly (+Ca2+) reduced by troponin C. While fragment T1 alone did not promote induction, it accentuated the effects of T2 and troponin I. Since T1 does not interact with T2 or troponin I but does interact weakly with the NH2 terminus of tropomyosin and can be expected to bind weakly at the residual interaction site(s) at the COOH terminus of NPTM, the observed effects of T1 have been ascribed to the linking of neighboring NPTM molecules at their ends.  相似文献   

20.
Vinculin is autoinhibited by an intramolecular interaction that masks binding sites for talin and F-actin. Although a recent structural model explains autoinhibition solely in terms of the interaction between vinculin tail (Vt) and residues 1-258 (D1), we find an absolute requirement for an interface involving the D4 domain of head (Vh residues 710-836) and Vt. Charge-to-alanine mutations in Vt revealed a class of mutants, T12 and T19, distal to the V-(1-258) binding site, which showed increases in their Kd values for head binding of 100- and 42-fold, respectively. Reciprocal mutation of residues in the D4 domain that contact Vt yielded a head-tail interaction mutant of comparable magnitude to T19. These findings account for the approximately 120-fold difference in Kd values between Vt binding to V-(1-258), as opposed to full-length Vh-(1-851). The significance of a bipartite autoinhibitory site is evidenced by its effects on talin binding to Vh. Whereas Vt fails to compete with the talin rod domain for binding to V-(1-258), competition occurs readily with full-length Vh, and this requires the D4 interface. Moreover in intact vinculin, mutations in the D4-Vt interface stabilize association of vinculin and talin rod. In cells, these head-tail interaction mutants induce hypertrophy and elongation of focal adhesions. Definition of a second autoinhibitory site, the D4-Vt interface, supports the competing model of vinculin activation that invokes cooperative action of ligands at two sites. Together the D1-Vt and D4-Vt interfaces provide the high affinity (approximately 10(-9)) autoinhibition observed in full-length vinculin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号