首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Homocamptothecin (hCPT) contains a seven-membered beta-hydroxylactone in place of the conventional six-membered alpha-hydroxylactone ring found in camptothecin and its tumor active analogues, including topotecan and irinotecan. The homologation of the lactone E-ring reinforces the stability of the lactone, thus reducing considerably its conversion into a carboxylate form which is inactive. We have recently shown that hCPT is much more active than the parent compound against a variety of tumor cells in vitro and in xenograft models, suggesting that a highly reactive lactone is not essential for topoisomerase I-mediated anticancer activity [Lesueur-Ginot et al. (1999) Cancer Res. 59, 2939-2943]. In the present study, we provide further evidence that hCPT has superior topoisomerase I inhibition capacities to CPT. In particular, we show that replacement of the camptothecin lactone E-ring with a homologous seven-membered lactone ring changes the sequence-specificity of the drug-induced DNA cleavage by topoisomerase I. Both CPT and hCPT stimulate the cleavage by topoisomerase I at T( downward arrow)G sites, but in addition, hCPT stabilizes cleavage at specific sites containing the sequence AAC( downward arrow)G. At low drug concentrations, the cleavage at the T( downward arrow)G sites and at the hCPT-specific C( downward arrow)G sites is more pronounced and more stable with hCPT than with CPT. The in vitro data were confirmed in cells. Higher levels of protein-DNA complexes were detected in P388 leukemia cells treated with hCPT than those treated with CPT. Immunoblotting experiments revealed that endogenous topoisomerase I was efficiently trapped onto DNA by hCPT in cells. Finally, the use of a leukemia cell line resistant to CPT provided evidence that topoisomerase I is involved in the cytotoxicity of hCPT. Altogether, the results show that the beta-hydroxylactone ring of hCPT plays an important and positive role in the poisoning of topoisomerase I. An explanation is proposed to account for such remarkable changes in the sequence specificity of topoisomerase I cleavage consequent to the modification of the lactone. The study sheds new light on the importance of the lactone ring of camptothecins for the stabilization of topoisomerase I-DNA complexes.  相似文献   

2.
The synthesis of a novel E-ring modified keto ether analogue of camptothecin and homocamptothecin by the cascade radical annulation route is reported. The analogue, Du1441, is an isomer of homocamptothecin, but includes the alpha-hydroxy carbonyl functionality that camptothecin possesses and homocamptothecin lacks. Despite these similarities, the new keto ether analogue is inactive in cell assays, and implications for the structure/activity relationship are discussed.  相似文献   

3.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of a covalent enzyme-DNA intermediate, which is reversibly stabilized by the anticancer agent camptothecin (CPT). Crystallographic studies of the 70-kDa C terminus of human Top1p bound to duplex DNA describe a monomeric protein clamp circumscribing the DNA helix. The structures, which lack the N-terminal domain, comprise the conserved clamp, an extended linker domain, and the conserved C-terminal active site Tyr domain. CPT bound to the covalent Top1p-DNA complex limits linker flexibility, allowing structural determination of this domain. We previously reported that mutation of Ala(653) to Pro in the linker increases the rate of enzyme-catalyzed DNA religation, thereby rendering Top1A653Pp resistant to CPT (Fiorani, P., Bruselles, A., Falconi, M., Chillemi, G., Desideri, A., and Benedetti P. (2003) J. Biol. Chem. 278, 43268-43275). Molecular dynamics studies suggested mutation-induced increases in linker flexibility alter Top1p catalyzed DNA religation. To address the functional consequences of linker flexibility on enzyme catalysis and drug sensitivity, we investigated the interactions of the A653P linker mutation with a self-poisoning T718A mutation within the active site of Top1p. The A653P mutation suppressed the lethal phenotype of Top1T718Ap in yeast, yet did not restore enzyme sensitivity to CPT. However, the specific activity of the double mutant was decreased in vivo and in vitro, consistent with a decrease in DNA binding. These findings support a model where changes in the flexibility or orientation of the linker alter the geometry of the active site and thereby the kinetics of DNA cleavage/religation catalyzed by Top1p.  相似文献   

4.
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.  相似文献   

5.
DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA via a concerted mechanism of DNA strand cleavage and religation. Top1p is the cellular target of the anti-cancer drug camptothecin (CPT), which reversibly stabilizes a covalent enzyme-DNA intermediate. Top1p clamps around duplex DNA, wherein the core and C-terminal domains are connected by extended alpha-helices (linker domain), which position the active site Tyr of the C-terminal domain within the catalytic pocket. The physical connection of the linker with the Top1p clamp as well as linker flexibility affect enzyme sensitivity to CPT. Crystallographic data reveal that a conserved Gly residue (located at the juncture between the linker and C-terminal domains) is at one end of a short alpha-helix, which extends to the active site Tyr covalently linked to the DNA. In the presence of drug, the linker is rigid and this alpha-helix extends to include Gly and the preceding Leu. We report that mutation of this conserved Gly in yeast Top1p alters enzyme sensitivity to CPT. Mutating Gly to Asp, Glu, Asn, Gln, Leu, or Ala enhanced enzyme CPT sensitivity, with the acidic residues inducing the greatest increase in drug sensitivity in vivo and in vitro. By contrast, Val or Phe substituents rendered the enzyme CPT-resistant. Mutation-induced alterations in enzyme architecture preceding the active site Tyr suggest these structural transitions modulate enzyme sensitivity to CPT, while enhancing the rate of DNA cleavage. We postulate that this conserved Gly residue provides a flexible hinge within the Top1p catalytic pocket to facilitate linker dynamics and the structural alterations that accompany drug binding of the covalent enzyme-DNA intermediate.  相似文献   

6.
In eukaryotes, DNA topoisomerase I (Top1) catalyzes the relaxation of supercoiled DNA by a conserved mechanism of transient DNA strand breakage, rotation, and religation. The unusual architecture of the monomeric human enzyme comprises a conserved protein clamp, which is tightly wrapped about duplex DNA, and an extended coiled-coil linker domain that appropriately positions the C-terminal active site tyrosine domain against the Top1 core to form the catalytic pocket. A structurally undefined N-terminal domain, dispensable for enzyme activity, mediates protein-protein interactions. Previously, reversible disulfide bonds were designed to assess whether locking the Top1 clamp around duplex DNA would restrict DNA strand rotation within the covalent Top1-DNA intermediate. The active site proximal disulfide bond in full-length Top1-clamp(534) restricted DNA rotation (Woo, M. H., Losasso, C., Guo, H., Pattarello, L., Benedetti, P., and Bjornsti, M. A. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 13767-13772), whereas the more distal disulfide bond of the N-terminally truncated Topo70-clamp(499) did not (Carey, J. F., Schultz, S. J., Sisson, L., Fazzio, T. G., and Champoux, J. J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 5640-5645). To assess the contribution of the N-terminal domain to the dynamics of Top1 clamping of DNA, the same disulfide bonds were engineered into full-length Top1 and truncated Topo70, and the activities of these proteins were assessed in vitro and in yeast. Here we report that the N terminus impacts the opening and closing of the Top1 protein clamp. We also show that the architecture of yeast and human Top1 is conserved in so far as cysteine substitutions of the corresponding residues suffice to lock the Top1-clamp. However, the composition of the divergent N-terminal/linker domains impacts Top1-clamp activity and stability in vivo.  相似文献   

7.
8.
Crotonaldehyde is a representative alpha,beta-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct covalent complex formation between the CrA-PdG adduct and Top1 is detectable after reduction with sodium cyanoborohydride, which is consistent with the formation of a Schiff base between Top1 and the ring open aldehyde form of the adduct. In addition, we show that the CrA-PdG adduct alters the cleavage and religation activities of Top1. It suppresses Top1 cleavage complexes at the adduct site and induces both reversible and irreversible cleavage complexes adjacent to the CrA-PdG adduct. The formation of stable DNA-Top1 crosslinks and the induction of Top1 cleavage complexes by CrA-PdG are mutually exclusive. Lastly, we found that crotonaldehyde induces the formation of DNA-Top1 complexes in mammalian cells, which suggests a potential relationship between formation of DNA-Top1 crosslinks and the mutagenic and carcinogenic properties of crotonaldehyde.  相似文献   

9.
In contrast to five-membered E-ring analogues, 7-oxyiminomethyl derivatives of homocamptothecins showed ability to form stable ternary complexes with DNA and topoisomerase I. The 7-oxyiminomethyl derivatives of homocamptothecins were evaluated as a racemic mixture. Following the isolation of the two enantiomers, the 20 (R)-hydroxy isomer confirms the best activity. By using a panel of human tumor cells, all tested homocamptothecins showed a potent antiproliferative activity, correlating to the persistence of the cleavable complex. No significant difference was observed between the natural scaffold and the corresponding homocamptothecin homologue. A selected compound of this series exhibited an excellent antitumor activity against human gastrointestinal tumor xenografts.  相似文献   

10.
DNA topoisomerase I (Top1) is over-expressed in tumour cells and is an important target in cancer chemotherapy. It relaxes DNA torsional strain generated during DNA processing by introducing transient single-strand breaks and allowing the broken strand to rotate around the intermediate Top1-DNA covalent complex. This complex can be trapped by a group of anticancer agents interacting with the DNA bases and the enzyme at the cleavage site, preventing further topoisomerase activity. Here we have identified novel Top1 inhibitors as potential anticancer agents by using a combination of structure- and ligand-based molecular modelling methods. Pharmacophore models have been developed based on the molecular characteristics of derivatives of the alkaloid camptothecin (CPT), which represent potent antitumour agents and the main group of Top1 inhibitors. The models generated were used for in silico screening of the National Cancer Institute (NCI, USA) compound database, leading to the identification of a set of structurally diverse molecules. The strategy is validated by the observation that amongst these molecules are several known Top1 inhibitors and agents cytotoxic against human tumour cell lines. The potential of the untested hits to inhibit Top1 activity was further evaluated by docking into the binding site of a Top1-DNA complex, resulting in a selection of 10 compounds for biological testing. Limited by the compound availability, 7 compounds have been tested in vitro for their Top1 inhibitory activity, 5 of which display mild to moderate Top1 inhibition. A further compound, found by similarity search to the active compounds, also shows mild activity. Although the tested compounds display only low in vitro antitumour activity, our approach has been successful in the identification of structurally novel Top1 inhibitors worthy of further investigation as potential anticancer agents.  相似文献   

11.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of camptothecin (CPT). Mutation of conserved residues in close proximity to the active site tyrosine (Tyr(727) of yeast Top1p) alters the DNA cleavage religation equilibrium, inducing drug-independent cell lethality. Previous studies indicates that yeast Top1T722Ap and Top1N726Hp cytotoxicity results from elevated levels of covalent enzyme-DNA intermediates. Here we show that Top1T722Ap acts as a CPT mimetic by exhibiting reduced rates of DNA religation, whereas increased Top1N726Hp.DNA complexes result from elevated DNA binding and cleavage. We also report that the combination of the T722A and N726H mutations in a single protein potentiates the cytotoxic action of the enzyme beyond that induced by co-expression of the single mutants. Moreover, the addition of CPT to cells expressing the double top1T722A/N726H mutant did not enhance cell lethality. Thus, independent alterations in DNA cleavage and religation contribute to the lethal phenotype. The formation of distinct cytotoxic lesions was also evidenced by the different responses induced by low levels of these self-poisoning enzymes in isogenic strains defective for the Rad9 DNA damage checkpoint, processive DNA replication, or ubiquitin-mediated proteolysis. Substitution of Asn(726) with Phe or Tyr also produces self-poisoning enzymes, implicating stacking interactions in the increased kinetics of DNA cleavage by Top1N726Hp and Top1N726Fp. In contrast, replacing the amide side chain of Asn(726) with Gln renders Top1N726Qp resistant to CPT, suggesting that the orientation of the amide within the active site is critical for effective CPT binding.  相似文献   

12.
13.
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of camptothecin. Recent reports of enzyme structure highlight the importance of conserved amino acids N-terminal to the active site tyrosine and the involvement of Asn-726 in mediating Top1p sensitivity to camptothecin. To investigate the contribution of this residue to enzyme catalysis, we evaluated the effect of substituting His, Asp, or Ser for Asn-726 on yeast Top1p. Top1N726S and Top1N726D mutant proteins were resistant to camptothecin, although the Ser mutant was distinguished by a lack of detectable changes in activity. Thus, a basic residue immediately N-terminal to the active site tyrosine is required for camptothecin cytotoxicity. However, replacing Asn-726 with Asp or His interfered with distinct aspects of the catalytic cycle, resulting in cell lethality. In contrast to camptothecin, which inhibits enzyme-catalyzed religation of DNA, the His substituent enhanced the rate of DNA scission, whereas the Asp mutation diminished the enzyme binding of DNA. Yet, these effects on enzyme catalysis were not mutually exclusive as the His mutant was hypersensitive to camptothecin. These results suggest distinct mechanisms of poisoning DNA topoisomerase I may be explored in the development of antitumor agents capable of targeting different aspects of the Top1p catalytic cycle.  相似文献   

14.
Human topoisomerase I (top1) is an important target for anti-cancer drugs, which include camptothecin (CPT) and its derivatives. To elucidate top1 inhibition in vitro, we made a series of duplex DNA substrates containing a deoxyadenosine stereospecifically modified by a covalent adduct of benzo[a]pyrene (BaP) diol epoxide [Pommier, Y., et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 10739-10744]. The known orientation of the hydrocarbon adduct in the DNA duplex relative to the top1 cleavage site, in combination with a top1/DNA crystal structure [Redinbo, M. R., et al. (1998) Science 279, 1504-1513], was used to construct a structure-based model to explain the in vitro top1 inhibition results obtained with adducted DNA duplexes. Here we experimentally determined that the lactone form of CPT was stabilized by an irreversible top1/DNA covalent complex. We removed the BaP moiety from the DNA in the published model, and docked the lactone forms of CPT and derivatives into the top1/DNA active site cavity. The docked ligands were minimized, and interaction energy scores between the ligands and the top1/DNA complex were determined. CPT docks perpendicular to the DNA backbone, projects outward from the major groove, and makes a network of potential H-bonds with the active site DNA and top1 residues, including Arg364, Lys532, and Asn722. The results are consistent with the known structure-activity relationships of CPT and derivatives. In addition, the model proposed a novel top1/N352A "resistance" mutation for 10-OH derivatives of CPT. The in vitro biochemical characterization of the top1/N352A mutant supported the model.  相似文献   

15.
Topoisomerase I (Top1) activities are sensitive to various endogenous base modifications, and anticancer drugs including the natural alkaloid camptothecin. Here, we show that triple helix-forming oligonucleotides (TFOs) can enhance Top1-mediated DNA cleavage by affecting either or both the nicking and the closing activities of Top1 depending on the position and the orientation of the triplex DNA structure relative to the Top1 site. TFO binding 1 bp downstream from the Top1 site enhances cleavage by inhibiting religation and to a lesser extent DNA nicking. In contrast, TFO binding 4 bp downstream from the Top1 site enhances DNA nicking especially when the 3′ end of the TFO is proximal to the Top1 site. However, when the orientation of the triplex is inverted, with its 5′ terminus 4 bp downstream from the Top1 site, religation is also inhibited. These position- and orientation-dependent effects of triplex structures on the Top1-mediated DNA cleavage and religation are discussed in the context of molecular modeling and effects of TFO on DNA twist and mobility at the duplex/triplex junction.  相似文献   

16.
lac permease of Escherichia coli was modified by site-directed mutagenesis in order to investigate the effects of polarity, distance, and orientation between the components of a putative H+ relay system (Arg302/His322/Glu325) postulated to be involved in lactose-coupled H+ translocation. The importance of polarity between His322 and Glu325 was studied by interchanging the residues, and the modified permease--H322E/E325H--is inactive in all modes of translocation. The effect of distance and/or orientation between His322 and Glu325 was investigated by interchanging Glu325 with Val326, thereby moving the carboxylate one residue around putative helix X. The resulting permease molecule--E325V/V326E--is also completely inactive; control mutations, E325V [Carrasco, N., Püttner, I. B., Antes, L. M., Lee, J. A., Larigan, J. D., Lolkema, J. S., Roepe, P. D., & Kaback, H. R. (1989) Biochemistry (second paper of three in this issue)], and E325A/V326E, indicate that a Glu residue at position 326 inactivates the permease. The wild-type orientation between His and Glu was then restored by further mutation of E325V/V326E to introduce a His residue into position 323 or by interchanging Met323 with His322. The resulting permease molecules--M323H/E325V/V326E and H322M/M323H/E325V/V326E--contain the wild-type His/Glu orientation, but the His/Glu ion pair is rotated about the helical axis by 100 degrees relative to Arg302 in putative helix IX. Both mutants are inactive with respect to all modes of translocation. The results provide strong support for the contention that the polarity between His322 and Glu325 and the geometric relationship between Arg302, His322, and Glu325 are critical for permease activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Based on their activity as effectors for the ATPase activity of Escherichia coli replication factor Y and as templates for primosome-directed DNA synthesis, single-point mutations in the L- and H-strand primosome assembly sites from pBR322 DNA have been grouped into four classes (Abarzúa, P., Soeller, W., and Marians, K. (1984) J. Biol. Chem. 259, 14286-14292). In this report, the effect of various ligands on the characteristic activities of primosome assembly site class II mutants has been examined. Both Mn2+ and spermidine can, at low levels, substitute for Mg2+ in the activation of wild-type sites as effectors for factor Y-catalyzed hydrolysis of ATP. Class II mutant sites characteristically require higher levels of these ligands for activation, suggesting that the specific higher order structure of an active primosome assembly site is maintained through base pairing within the single-stranded DNA sequence. This conclusion is supported by the following. 1) Excess levels of the E. coli single-stranded DNA-binding protein can inactivate wild-type sites at 1 mM Mg2+. Either the addition of NaCl to 80 mM or an increase in the Mg2+ concentration to 5 mM protects against this inactivation. Class II mutant sites, however, cannot be stabilized by 80 mM NaCl at 1 mM Mg2+, and only some class II mutants can be stabilized at 5 mM Mg2+. 2) Active second-site revertants, isolated in vivo and in vitro, of inactive primosome assembly sites containing multiple-base substitutions have mutated to restore lost base pairs in the proposed stem and loop structure of the sites.  相似文献   

18.
19.
Surveys of X-ray structures of Ca2+-containing and lanthanide ion-containing proteins and coordination complexes have been performed and structural features of the metal binding sites compared. A total of 515 structures of Ca2+-containing proteins were considered, although the final data set contained only 44 structures and 60 Ca2+ binding sites with a total of 323 ligands. Eighteen protein structures containing lanthanide ions were considered with a final data set containing eight structures and 11 metal binding sites. Structural features analysed include coordination numbers of the metal ions, the identity of their ligands, the denticity of carboxylate ligands, and the type of secondary structure from which the ligands are derived. Three general types of calcium binding site were identified in the final data set: class I sites supply the Ca2+ ligands from a continuous short sequence of amino acids; class II sites have one ligand supplied by a part of the amino acid sequence far removed from the main binding sequence; and class III sites are created by amino acids remote from one another in the sequence. The abundant EF-hand type of Ca2+ binding site was under-represented in the data set of structures analysed as far as its biological distribution is concerned, but was adequately represented for the chemical survey undertaken. A turn or loop structure was found to provide the bulk of the ligands to Ca2+, but helix and sheet secondary structures are slightly better providers of bidentate carboxylate ligation than turn or loop structures. The average coordination number for Ca2+ was 6.0, though for EF-hand sites it is 7. The average coordination number of a lanthanide ion in an intrinsic protein Ca2+ site was 7.2, but for the adventitious sites was only 4.4. A survey of the Cambridge Structural Database showed there are small-molecule lanthanide complexes with low coordination numbers but it is likely that water molecules, which do not appear in the electron density maps, are present for some lanthanide sites in proteins. A detailed comparison of the well-defined Ca2+ and lanthanide ion binding sites suggests that a reduction of hydrogen bonding associated with the ligating residues of the binding sites containing lanthanide ions may be a response to the additional positive charge of the lanthanide ion. Major structural differences between Ca2+ binding sites with weak and strong binding affinities were not obvious, a consequence of long-range electrostatic interactions and metal ion-induced protein conformational changes modulating affinities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号