首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary The xylose (glucose) isomerase from the thermophile Thermus thermophilus seems to have potential for the development of new isomerization processes using high temperatures and slightly acidic pH. The isomerase has an optimum temperature at 95° C, and is also very stable at high temperatures. The optimum pH is around 7.0, close to where by-product formation is minimal. Since Thermus produces only a little of this useful isomerase, the production of the cloned gene in Escherichia coli and Bacillus brevis were compared. Especially B. brevis was able to produce the isomerase effeciently, more than 1 g/l, in spite of the high G + content (67%) of the Thermus gene, and the presence of codons not frequently used in E. coli or B. brevis.Offprint requests to: S. Udaka  相似文献   

4.
5.
M R Ahmadian  R Kreutzer  M Sprinzl 《Biochimie》1991,73(7-8):1037-1043
The elongation factor Tu (EF-Tu) encoded by the tufl gene of the extreme thermophilic bacterium Thermus thermophilus HB8 was expressed under control of the tac promoter from the recombinant plasmid pEFTu-10 in Escherichia coli. Thermophilic EF-Tu-GDP, which amounts to as much as 35% of the cellular protein content, was separated from the E coli EF-Tu-GDP by thermal denaturation at 60 degrees C. The overproduced E coli-born T thermophilus EF-Tu was characterized by: i) recognition through T thermophilus anti-EF-Tu antibodies; ii) analysis of the peptides obtained by cyanogen bromide cleavage; iii) thermostability; iv) guanine nucleotide binding activity in the absence and the presence of elongation factor Ts; and v) ternary complex formation with phenylalanyl-tRNAPhe and GTP.  相似文献   

6.
The 3-isopropylmalate dehydrogenase gene from an extreme thermophile, Thermus thermophilus, was not expressed in Escherichia coli unless a palindromic structure around the ribosome binding site was eliminated or a leader open reading frame was introduced into the upstream flanking region of the gene. This report suggests a way to increase the expression of this gene, with a high G+C content, in E. coli.  相似文献   

7.
Abstract Analysis by electron microscopy of cells of Thermus thermophilus revealed the presence of a crystalline layer on the cell surface with the characteristic appearance of an S-layer. The layer is apparently built up by a single protein with a M r of 100 000 in a hexagonal array. The unit cell dimension of the S-layer is 24 ± 2 nm.  相似文献   

8.
The GC-rich leuB gene (coding for 3-isopropylmalate dehydrogenase) of Thermus thermophilus is scarcely expressed in Escherichia coli, unless a leader open reading frame (ORF) is provided. We conducted experiments on nonexpressible plasmids and obtained a modified plasmid showing greatly enhanced expression: the degree of expression from the plasmid was higher than that from any other plasmid so far constructed. Sequence analysis of the plasmid showed that a 258-bp leader ORF overlapped with the initiation codon of leuB was newly formed as a consequence of the insertion of a 0.5-kb BamHI fragment derived from the E. coli chromosome. The degree of expression from the plasmid was further improved by shortening the leader ORF to 36 bp without changing the overlapping portion, and the flanking sequence between the promoter and the leader ORF was removed. The expression in E. coli of the pfk1 gene (coding for phosphofructokinase) of T. thermophilus was improved by the construction of a structure similar to that which enhanced the expression of the leuB gene. Based on the results, a practical method for the overexpression of GC-rich genes in E. coli is proposed. Received: November 26, 1996 / Accepted: May 17, 1997  相似文献   

9.
10.
The bacterial twin-arginine translocation (Tat) pathway is distinct from the Sec system by its remarkable capacity to export folded enzymes. To address the question whether the two systems are capable of translocating homologous enzymes catalyzing the same reaction, we cloned the tap gene encoding Thermus thermophilus alkaline phosphatase (Tap) and expressed it in Escherichia coli. Unlike the alkaline phosphatase of E. coli, which is translocated through the Sec system and then activated in the periplasm, Tap was exported exclusively via the Tat pathway and active Tap precursor was observed in the cytoplasm. These results demonstrate that two sequence and functional related enzymes are exported by distinct protein transport systems, which may play an integral role in the bacterial adaptation to their environment during the evolution.  相似文献   

11.
12.
A 3.4-kb SphI fragment carrying the pullulanase gene of Thermus thermophilus HB8 was cloned. Based on the nucleotide sequence of it and the flanking region analyzed by direct sequencing of the inverse PCR product, an expression vector was constructed. The E. coli cells harboring the plasmid produced an about 80-kDa protein having pullulanase activity, the optimum temperature of which was 70 degrees C.  相似文献   

13.
Overproduction of Thermus sp. YS 8-13 manganese catalase in Escherichia coli BL21(DE3) was accomplished by introducing a derivative of pET-23a(+) containing a copy of the coding gene into the multicloning site. E. coli BL21(DE3)/pETMNCAT produced abundant quantities of manganese catalase as insoluble inclusion bodies. Regeneration of active catalase was achieved by denaturation in guanidine hydrochloride and subsequent dialysis in the presence of manganese ion. When the E. coli chaperone genes GroEL, GroES, DnaK, DnaJ and GrpE were coexpressed with manganese catalase, a significant fraction of the overproduced protein was partitioned into the soluble fraction. However, almost all of the soluble enzyme was isolated in a manganese-deficient apo form which could subsequently be converted into active holoenzyme by incubation with manganese ion at high temperatures. Further experiments on this apo catalase suggested that the structure of this protein was virtually identical to the active holoenzyme.  相似文献   

14.
The bacterium Thermus thermophilus grows at temperatures up to 85 degrees C and is equipped with thermostable enzymes of biotechnological interest. The recently decoded genomes of two strains of T. thermophilus, HB27 and HB8, each composed of a chromosome and a megaplasmid, must certainly encode specific strategies to encounter the thermophile challenge. Here, a genome comparison was undertaken to distinguish common functions from the flexible gene pool, which gave some clues about the biological traits involved in a thermophile lifestyle. The chromosomes were highly conserved, with about 100 strain-specific genes probably reflecting adaptations to the corresponding biological niche, such as metabolic specialities and distinct cell surface determinates including type IV pili. The two megaplasmids showed an elevated plasticity. Upon comparison and re-examination of their gene content, both megaplasmids seem to be implicated in assisting thermophilic growth: a large portion of their genes are apparently involved in DNA repair functions. About 30 plasmid-encoded genes exhibit sequence and domain composition similarity to a predicted DNA repair system specific for thermophilic Archaea and bacteria. Moreover, the plasmid-encoded carotenoid biosynthesis gene cluster is interlocked with genes involved in UV-induced DNA damage repair. This illustrates the importance of DNA protection and repair at elevated growth temperatures.  相似文献   

15.
A strategy devised to isolate a gene coding for a dihydrofolate reductase from Thermus thermophilus DNA delivered only clones harboring instead a gene (the T. thermophilus dehydrogenase [DH(Tt)] gene) coding for a dihydropteridine reductase which displays considerable dihydrofolate reductase activity (about 20% of the activity detected with 6,7-dimethyl-7,8-dihydropterine in the quinonoid form as a substrate). DH(Tt) appears to account for the synthesis of tetrahydrofolate in this bacterium, since a classical dihydrofolate reductase gene could not be found in the recently determined genome nucleotide sequence (A. Henne, personal communication). The derived amino acid sequence displays most of the highly conserved cofactor and active-site residues present in enzymes of the short-chain dehydrogenase/reductase family. The enzyme has no pteridine-independent oxidoreductase activity, in contrast to Escherichia coli dihydropteridine reductase, and thus appears more similar to mammalian dihydropteridine reductases, which do not contain a flavin prosthetic group. We suggest that bifunctional dihydropteridine reductases may be responsible for the synthesis of tetrahydrofolate in other bacteria, as well as archaea, that have been reported to lack a classical dihydrofolate reductase but for which possible substitutes have not yet been identified.  相似文献   

16.
The structures of Escherichia coli soluble inorganic pyrophosphatase (E-PPase) and Thermus thermophilus soluble inorganic pyrophosphatase (T-PPase) have been compared to find the basis for the superior thermostability of T-PPase. Both enzymes are D3 hexamers and crystallize in the same space group with very similar cell dimensions. Two rather small changes occur in the T-PPase monomer: a systematic removal of Ser residues and insertion of Arg residues, but only in the C-terminal part of the protein, and more long-range ion pairs from the C-terminal helix to the rest of the molecule. Apart from the first five residues, the three-dimensional structures of E-PPase and T-PPase monomers are very similar. The one striking difference, however, is in the oligomeric interactions. In comparison with an E-PPase monomer, each T-PPase monomer is skewed by about 1 A in the xy plane, is 0.3 A closer to the center of the hexamer in the z direction, and is rotated by approximately 7 degrees about its center of gravity. Consequently, there are a number of additional hydrogen bond and ionic interactions, many of which form an interlocking network that covers all of the oligomeric surfaces. The change can also be seen in local distortions of three small loops involved in the oligomeric interfaces. The complex rigid-body motion has the effect that the hexamer is more tightly packed in T-PPase: the amount of surface area buried upon oligomerization increases by 16%. The change is sufficiently large to account for all of the increased thermostability of T-PPase over E-PPase and further supports the idea that bacterial PPases, most active as hexamers or tetramers, achieve a large measure of their stabilization through oligomerization. Rigid-body motions of entire monomers to produce tighter oligomers may be yet another way in which proteins can be made thermophilic.  相似文献   

17.
18.
Escherichia coli TG1, transformed with an expression plasmid pAQN carrying the aqualysin I (AQI) gene derived from Thermus aquaticus YT-1 under the control of the tac promoter, was cultivated under various conditions in order to find fermentation conditions for the efficient production of the thermophilic protease, AQI. The amount of AQI produced was closely related to the growth phase at the time of isopropyl--d-thiogalactopyranoside (IPTG) induction, and the highest production was obtained when it was added during the exponential growth phase. The addition of yeast extract had a greater effect on AQI production than did Polypeptone or casamino acids, and AQI productivity increased from 1.1 × 103 kU/g to 2.7 × 103 kU/g cells when 2 g/l yeast extract was supplied. Furthermore, the specific growth rate improved from 0.35 h–1 to 0.89 h–1 when 5 g/l yeast extract was supplied. The culture temperature also affected AQI gene expression. When the temperature was shifted from 37°C to 34°C at the time of IPTG induction, 19 kU/ml enzymatically active AQI was obtained, corresponding to a 28% increase over the amount produced in a batch culture without a shift. This is about a 44-fold higher yield than was obtained from the original strain, T. aquaticus YT-1.  相似文献   

19.
Ribosome recycling factor, referred to as RRF, is essential for bacterial growth because of its activity of decomposition of the post-termination complex of the ribosome after release of polypeptides. In this study, we isolated a conditionally lethal amber mutation, named frr-3, in the Escherichia coli RRF gene at amino acid position 161, showing that the truncation of the C-terminal 25 amino acids of RRF is lethal to E. coli. An RRF gene cloned from Thermus thermophilus, whose protein is 44% identical and 68% similar to E. coli RRF, failed to complement the frr-3(Am) allele. However, truncation of the C-terminal five amino acids conferred intergeneric complementation activity on T. thermophilus RRF, demonstrating the modulator activity of the C-terminal tail. Rapid purification of T. thermophilus RRF was achieved by T7-RNA polymerase-driven overexpression for crystallography.  相似文献   

20.
We conducted a chromosome walk to obtain a DNA fragment downstream of lysJ and found an argE homolog in a putative operon composed of lysJ-orfC-orfD-argE homologs. A knockout mutant of the argE homolog showed significantly slow growth on a minimal medium, and the growth was markedly improved by addition of lysine. We therefore termed this gene lysK. Purified LysK protein has deacetylating activities for both N(2)-acetyllysine and N(2)-acetylornithine at almost equal efficiency. These results suggest that lysK which may share an ancestor with argE functions not only for the lysine biosynthesis, but also for arginine biosynthesis in Thermus thermophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号