首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Angiotensin I converting enzyme (ACE) and neutral endopeptidase ("enkephalinase"; NEP), were purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln6-Phe7,-Phe8, and Gly9-Leu10 and neurotensin (NT) at Pro10-Tyr11 and Tyr11-Ile12. NEP hydrolyzed 0.1 mM SP, NT and their C-terminal fragments at the following rates (mumol/min/mg): SP1-11 = 7.8, SP4-11 = 11.7, SP5-11 = 15.4, SP6-11 = 15.6, SP8-11 = 6.7, NT1-13 = 2.9, and NT8-13 = 4.0. Purified ACE rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe8-Gly9 and Gly9-Leu10 to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl- dependent and inhibited by captopril. ACE released mainly C-terminal tripeptide from SP methyl ester, but only dipeptide from SP free acid. Modification of arginine residues in ACE with cyclohexanedione or butanedione similarly inhibited hydrolysis of SP, bradykinin and Bz-Gly-Phe-Arg (80-93%) indicating an active site arginine is required for hydrolysis of SP. ACE hydrolyzed NT at Tyr11-Ile12 to release Ile12-Leu13. SP, NT and their derivatives (0.1 mM) were cleaved by ACE at the following rates (mumol/min/mg): SP1-11 = 1.2, SP methyl ester = 0.7, SP free acid = 8.5, SP4-11 = 2.4, SP5-11 = 0.9, SP6-11 = 1.4, SP8-11 = 0, NT1-13 = 0.2, and NT8-13 = 1.3. Peptide substrates were used as inhibitors of ACE (substrate = FA-Phe-Gly-Gly) and NEP (substrate = Leu5-enkephalin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M E Hall  J M Stewart 《Peptides》1984,5(1):85-89
Substance P (SP) significantly reduced fighting in mice made aggressive by prolonged isolation. The N-terminal heptapeptide fragment SP (1-7) also reduced fighting. The C-terminal fragment SP(4-11) was without activity, while the shorter C-terminal fragment analog less than E-SP(7-11) significantly increased isolation-induced fighting. The aggression-enhancing effect of less than E-SP(7-11) was antagonized by naloxone, which by itself had no significant effect. The aggression-reducing effect of SP(1-11) was significantly enhanced by naloxone, while the effect of SP(1-7) was unchanged. These results demonstrate that a behavioral effect of SP may be duplicated by an N-terminal fragment of the SP molecule, and that peptide fragments or analogs of the N- and C-terminal portions of the SP molecule can exert opposing effects on a specific behavior. These findings represent a structure/activity relationship that is strikingly different from any previously described for SP. The differing effects of naloxone on N- and C-terminal fragment analogs suggest that these two effects may be mediated by different mechanisms.  相似文献   

3.
The binding of 3H-substance P (3H-SP) to longitudinal muscle membranes of the guinea pig small intestine has been characterized. The binding of 3H-SP exhibited a high affinity (Kd = 0.5nM). It was saturable (Bmax = 2 fmoles/mg tissue), reversible, and temperature-dependent. Kinetic studies and competition of 3H-SP binding by unlabeled SP yielded Kd and Ki values, respectively, which were in good agreement with the Kd calculated from saturation studies. The binding of 3H-SP appeared to be dependent on the presence of divalent cations in the incubation buffer. It was displaced by SP and various analogs and fragments in the rank order of SP greater than SP-(2-11) = SP-(3-11) greater than Nle11- SP = physalaemin greater than SP-(4-11) greater than SP-(5-11) greater than eledoisin much greater than SP-(7-11). Our results indicate that 3H-SP binds in longitudinal muscle of the guinea pig small intestine to a biologically relevant receptor which in many respects resembles the SP receptor characterized in the brain and the salivary gland of the rat.  相似文献   

4.
Each of the last 6 peptide bonds in the COOH terminus of [Leu11]substance P [( Leu11]SP) and [Nle11]spantide were replaced with [CH2NH], and each analogue was tested for SP agonist or antagonist activity by determining its ability to interact with SP receptors on dispersed acini from guinea pig pancreas. Each of the 6 spantide and 5 of the 6 SP analogues had no agonist activity, whereas [psi 9-10]SP was an agonist. For the spantide pseudopeptides, the psi 10-11 analogue (Ki,2.8 microM) was equipotent as an antagonist to spantide itself, whereas the psi 9-10, psi 8-9, psi 7-8, and psi 6-7 analogues were 2.5, 7, 5, and 3 times less potent. For the SP pseudopeptides, the psi 10-11 analogue was the most potent antagonist (Ki, 6.2 microM), whereas the psi 8-9, psi 7-8, and psi 6-7 analogues were 7-, 36-, and 39-fold less potent. There was a close correlation between the ability of each pseudopeptide to inhibit binding of 125I-Bolton-Hunter-SP and to affect amylase secretion. [psi 10-11]SP inhibited SP-stimulated amylase release in a competitive manner, and its inhibitory ability was specific for the SP receptor. Despite [psi 10-11]SP, spantide, and [psi 10-11]spantide having similar affinities for the SP receptor (Ki, 2-6 microM), for inhibition of binding of 125I-[Tyr4]bombesin, the analogues differed with [psi 10-11]SP having a 50-fold lower affinity than for the SP receptor, whereas [psi 10-11]spantide had a 4-fold lower affinity and spantide a 1.5-fold lower affinity for the SP receptor. These results demonstrate that SP pseudopeptides represent a new class of SP receptor antagonists and, in contrast to the currently described SP receptor antagonists, are more specific for SP receptors.  相似文献   

5.
The effects of neurokinins (NK) and related peptides on the secretion of 6-keto-prostaglandin F1 alpha, a stable metabolite of prostacyclin, were measured. These peptides enhanced three- to five-fold the basal secretion rate with the following rank order of potency (based on threshold concentrations for a significant output): substance P (SP) greater than or equal to NKA greater than SP 4-11 greater than or equal to [pGlu6]SP 6-11 = SP 7-11.NKB and SP 1-9 were inactive. Ac[Arg6, Sar9, Met(O2)11]SP, a NK1 receptor selective agonist, was more potent than other selective agonists for the NK2 and NK3 receptor subtypes. These results suggest that the NK receptors, which mediate the release of prostacyclin from human endothelial cells, belong to the NK1 subtype.  相似文献   

6.
In order to develop a sensitive pharmacological preparation which would allow the measurement of the inhibitory effects of kinins and substance P (SP) in vascular smooth muscles, several large arteries of the dog were studied in vitro. The common carotid artery was found to be one of the most sensitive preparations to SP and kinins. When contracted with low concentrations of noradrenaline (between 3.0 x 10(-8) and 3.0 x 10(-7) M), this artery responds to SP (6.5 x 10(-11)-6.5 x 10(-9) M) and bradykinin (BK) (8.1 x 10(-11)-9.1 x 10(-8) M) with relaxations that are proportional to the concentrations of the two peptides. SP and BK appear to exert their relaxant effects through the activation of specific receptors as the exposure of the common carotid artery to concentrations of [Leu8]-angiotensin II, propranolol, methysergide, cimetidine, or atropine sufficient to inhibit the effects of the corresponding agonists do not affect the relaxing effect of SP and BK. [Leu8]-des-Arg9-BK (1.0 x 10(-6) M), indomethacin (2.8 x 10(-5) M), and lioresal (4.7 x 10(-5) M) are also inactive. When the dog common carotid artery is desensitized with high concentrations of SP, BK, eledoisin, and physalaemin a cross-desensitization is observed only between SP and physalaemin. These results support the conclusion that SP and kinins act on different receptors. The order of potency of kinins is the following: BK = [Tyr(Me)8]-BK greater than des-Arg9-BK, suggesting that the receptor for kinins is of the B2 type. The order of potency of peptides related to SP is SP greater than C-terminal 4-11 greater than C-terminal hexapeptide 6-11, similar to that observed in other vascular preparations. The results summarized in this paper indicate that the dog common carotid artery is a preparation sensitive to SP and BK and useful for studying the relaxant effect of these two peptides on vascular smooth muscles.  相似文献   

7.
The internalization of [3H]propionyl[Met(O2)11]SP(7-11) which binds one binding site and of [3H][Pro9]SP which binds the two binding sites associated with the NK-1 receptor has been examined in CHO cells. The quantity of [3H][Pro9]SP measured inside the cytoplasm in kinetic experiments is fully temperature-dependent. In contrast, [3H]propionyl[Met(O2)11]SP(7-11) internalization reaches the same extent whatever the temperature, although the rate slowed down with lower temperature. The extent of internalization of [3H][Pro(9)]SP relative to the total specific bound is biphasic, when the extent of internalization of [3H]propionyl[Met(O2)11]SP(7-11) remains constant. For [3H][Pro9]SP, a high-affinity high-yield component inhibited in the presence of propionyl[Met(O2)11]SP(7-11) and a low-affinity low-yield component in the internalization process could be determined. Saturation studies show that [3H][Pro9]SP-binding parameters are insensitive to both phenylarsine oxide and monensin treatment, whereas [3H]propionyl[Met(O2)11]SP(7-11) maximal binding is decreased in both cases. Altogether, these data suggest that the two radiolabeled peptides should not follow the same internalization pathway.  相似文献   

8.
Two nonstoichiometric ligand binding sites have been previously reported for the NK-1 receptor, with the use of classical methods (radioligand binding and second messenger assays). The most populated (major, NK-1M) binding site binds substance P (SP) and is related to the adenylyl cyclase pathway. The less populated (minor, NK-1m) binding site binds substance P, C-terminal hexa- and heptapeptide analogues of SP, and the NK-2 endogenous ligand, neurokinin A, and is coupled to the phospholipase C pathway. Here, we have examined these two binding sites with plasmon-waveguide resonance (PWR) spectroscopy that allows the thermodynamics and kinetics of ligand-receptor binding processes and the accompanying structural changes of the receptor to be monitored, through measurements of the anisotropic optical properties of lipid bilayers into which the receptor is incorporated. The binding of the three peptides, substance P, neurokinin A, and propionyl[Met(O(2))(11)]SP(7-11), to the partially purified NK-1 receptor has been analyzed by this method. Substance P and neurokinin A bind to the reconstituted receptor in a biphasic manner with two affinities (K(d1) = 0.14 +/- 0.02 nM and K(d2) = 1.4 +/- 0.18 nM, and K(d1) = 5.5 +/- 0.7 nM and K(d2) = 620 +/- 117 nM, respectively), whereas only one binding affinity (K(d) = 5.5 +/- 0.4 nM) could be observed for propionyl[Met(O(2))(11)]SP(7-11). Moreover, binding experiments in which one ligand was added after another one has been bound to the receptor have shown that the binding of these ligands to each binding site was unaffected by the fact that the other site was already occupied. These data strongly suggest that these two binding sites are independent and non-interconvertible on the time scale of these experiments (1-2 h).  相似文献   

9.
Abstract: In the rat parotid gland, the neuropeptide substance P (SP), as well as SP(4–11), and septide elicited inositol phosphate production (EC50 values 0.44, 2, and 20 n M , respectively). No additivity of the maximal response to the three agonists was observed. SP, SP(4–11), and septide also stimulated protein secretion; for SP, two EC50 were determined (0.5 and 160 n M ), whereas a single one could be determined for SP(4–11) and septide (EC50 values 15 and 20 n M , respectively). The selective tachykinin NK1 receptor antagonist RP67580 acted as a competitive inhibitor of both SP- and SP(4–11)-induced inositol phosphate production. Its effect on septide-induced inositol phosphate production was noncompetitive. RP67580 is apparently as potent at antagonizing septide, SP, or SP(4–11) (in all cases K B = 3 n M ). These results show that in parotid gland, only NK1 receptors are activated by SP, SP(4–11), and septide. We also showed that the protein secretion stimulated by SP was inhibited competitively by RP67580, whereas the effect of RP67580 was noncompetitive on protein secretion when SP(4–11) or septide was used. Our data indicate that in rat parotid gland, the existence of a specific "septide-sensitive" receptor can be ruled out and that only the NK1 receptor is present and mediates cellular responses. Taken together, these results show that in this tissue the NK1 receptor would present at least two different binding sites that could be coupled to different transduction pathways and that would regulate protein secretion.  相似文献   

10.
To probe the substrate specificity of the human metalloproteinase stromelysin (SLN), we determined values of kc/Km for the SLN-catalyzed hydrolysis of substance P (Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-MetNH2; SP; kc/Km = 1790 +/- 140 M-1 s-1), 15 analogues of SP, and 17 other peptides. We found a remarkably narrow substrate specificity for SLN: while SP and its analogues could serve as substrates for SLN (hydrolysis occurred exclusively at the Gln6-Phe7 bond), peptides that were not direct analogues could not (kc/Km less than 3 M-1 s-1). From the study of the SLN-catalyzed hydrolysis of SP and its analogues, the following findings emerged: (1) Decreasing the length of SP results in decreases in kc/Km. (2) Conservative amino acid replacements near the scissle bond of SP decrease kc/Km. (3) The SP analogue in which Gly9 is replaced with sarcosine (N-methylglycine) is not hydrolyzed by SLN (kc/Km less than 3 M-1 s-1). (4) Several SP analogues that are not hydrolyzed by SLN are inhibitors of the enzyme. The complexes formed from interaction of SLN with these peptides have dissociation constants that are similar to the Km value for the complex of SLN and SP. Combined, these results suggest that SLN uses the energy that is available from favorable interactions with its substrate to stabilize catalytic transition states but not the Michaelis complex or other stable-state complexes.  相似文献   

11.
The influence in vitro of SP and C-terminal fragments of analogues SP(5-11) (pyroGlu5, Tyr8); SP(6-11) (pyroGlu6, Tyr8); SP(6-11) (pyroGlu6, D-Phe7); SP(6-11) (pyroGlu6, D-Phe8) on the (Ca, Mg) and (Na, K) ATPases activities from synaptosomal membranes of cerebral cortex and hippocampus of rat brain were compared. The data obtained in this study indicate the following: 1. Substance P stimulates the activities of (Na, K) and (Ca, Mg) ATPases more effectively in synaptosomal membranes from hippocampus than cerebral cortex. 2. Heptapeptide SP(5-11) (pyroGlu5, Tyr8) causes a more distinct increase of (Ca, Mg) ATPase activity in cortical synaptosomal membranes than SP does. 3. The change of L-Phe conformation to D in position 7 in hexapeptide induces reduction of enzymes activities in hippocampus. 4. Especially important for the maintenance of biological activity of drugs is the replacement of Gln5 with pyroGlu6 and conformation of Phe residues. 5. SP and shorter analogues of fragments SP C-terminal SP regulate the active cation transport in synaptosomal membranes of cerebral cortex and hippocampus.  相似文献   

12.
Ten substance P (SP) analogues were tested for their effects on mean arterial pressure and heart rate following intrathecal administration in the pentobarbital anaesthetized rat. The 10 analogues are [D-Pro4,D-alpha Npa7,9,10]SP(4-11) (A-I), (D-alpha Npa7,9,10]SP (A-II), [D-Trp7,9,10]SP (A-III), [D-Pro4,D-Npa7,9,Phe11]SP(4-11) (A-IV), [D-Pro4,D-beta Npa7,D-alpha Npa9,D-Phe11]SP(4-11) (A-V), [D-Pro4,Lys6,D-Trp7,9,10,Phe11]SP(4-11) (A-VI), [D-Pro4,D-Trp7,9,10,Phe11]SP(4-11) (A-VII), [D-Pro4,D-Trp7,9,10,Trp11]SP(4-11) (A-VIII), [D-Trp7,9,10,Trp11]SP (A-IX), and [D-Pro4,D-Phe7,9,10,Phe11]SP(4-11) (A-X). At 6.5 nmol, the analogues containing the amino acid D-Npa (A-I, A-II, A-IV, and A-V) or D-Phe (A-X) in positions 7, 9, or 10 of SP or its C-terminal octapeptide are devoid of the long-lasting cardio- and vaso-depressor effects, which are otherwise seen with analogues containing the amino acid D-Trp (A-III, A-VI, A-VII, A-VIII, and A-IX) in the same positions. Some of the analogues containing D-Npa maintain the initial hypotensive effect seen with SP while the analogue containing D-Phe produces only a small hypertensive response. The 10 analogues when tested at a dose that failed to alter basal mean arterial pressure and heart rate did not block the cardiovascular responses elicited by SP and no cross desensitization was observed between SP and these analogues. It appears that these SP analogues exert cardiovascular effects in the rat spinal cord probably without interacting with SP receptors.  相似文献   

13.
Jurkat and HUT 78 T cell lines, as well as peripheral blood human T cells activated with PHA plus PMA were used to investigate the capacity of substance P (SP) neuropeptide to regulate IL-2 production. By using Northern blot analysis and dosage of the IL-2 release in cell supernatants, we show that SP can act as cosignal with PHA + PMA to enhance the expression of specific IL-2 mRNA and IL-2 secretion in T cells. By using the N-terminal SP(1-4) or the C-terminal SP(4-11) fragments of the entire molecule, we show that the cosignal activity is carried by the C-terminal portion of SP. The SP and SP(4-11) optimal effects were observed at 10(-12) M and 10(-10) M when a broad range of concentrations from 10(-6) M to 10(-13) M was tested. The increase of IL-2 mRNA obtained with 10(-12) M of SP in the activated Jurkat cells was reduced by adding 10(-10) or 10(-9) M of the SP antagonist (D-Pro2,-D-Phe7,-D-Trp9)SP to the culture, indicating the specificity of SP action. The up-regulation observed when 10(-12) M of SP was applied together with the mitogens on Jurkat cells, persisted after a 16-h culture period, time at which the IL-2 mRNA signal is normally back to a minimum level when the mitogens are used alone. Furthermore, an induction of IL-2 mRNA accumulation, in a 2-h pulse, was obtained with 10(-12) M of SP on Jurkat cells previously activated with mitogens for 16 h.  相似文献   

14.
Skidgel RA  Erdös EG 《Peptides》2004,25(3):521-525
Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes and to the very broad and beneficial therapeutic applications of ACE inhibitors.  相似文献   

15.
Several studies have shown that the native 7alpha-hydroxy-dehydroepiandrosterone (7alpha-hydroxy-DHEA) is a substrate for the human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) which converts the 7alpha- into the 7beta-epimer through an oxido-reduction process. Research on the 11beta-HSD1 has investigated its function and structure through using native glucocorticoid substrates and known inhibitors. Other steroid substrates are also of interest. Among testosterone metabolites, 5alpha-androstane-3beta,17beta-diol (Adiol) is a substrate for the cytochrome P450 7B1 which produces 5alpha-androstane-3beta,7alpha,17beta-triol (7alpha-Adiol). This steroid may be a substrate for the 11beta-HSD1. We used recombinant yeast-expressed 11beta-HSD1 with NADP(H)-regenerating systems for examining the products obtained after incubation with 7alpha-Adiol, 7beta-Adiol or 7-oxo-Adiol. Oxidative conditions for the 11beta-HSD1 provided no trace of 7-oxo-Adiol but the inter-conversion of 7alpha- and 7beta-hydroxy-Adiol with V(max)/K(M) (pmol min(-1) microg(-1)/microM) values of 2 and 0.5, respectively. This state was maintained under reductive conditions. The use of a 7-oxo-Adiol substrate under reductive conditions led to the production of both 7alpha- and 7beta-hydroxy-Adiol with V(max)/K(M) values of 3.43 and 0.22, respectively. These findings support the hypothesis that the oxido-reductase and epimerase activities of 11beta-HSD1 depend on the positioning of the steroid substrates within the active site and may provide insight into its fine structure and mechanism of action.  相似文献   

16.
We previously reported that nerve terminals and glial cells lack an active uptake system capable of terminating transmitter action of substance P (SP). In the present study, we demonstrated the existence of an active uptake system for SP carboxy-terminal heptapeptide, (5-11)SP. When the slices from either rat brain or rabbit spinal cord were incubated with [3H](5-11)SP, the uptake of (5-11)SP into slices was observed. The uptake system has the properties of an active transport mechanism: it is dependent on temperature and sensitive to hypoosmotic treatment and is inhibited by ouabain and dinitrophenol (DNP). In the brain, (5-11)SP was accumulated by means of a high-affinity and a low-affinity uptake system. The Km and the Vmax values for the high-affinity system were 4.20 x 10(-8) M and 7.59 fmol/10 mg wet weight/min, respectively, whereas these values for the low-affinity system were 1.00 x 10(-6) M and 100 fmol/10 mg wet weight/min, respectively. In the spinal cord, there was only one uptake system, with a Km value of 2.16 x 10(-7) M and Vmax value of 26.2 fmol/10 mg wet weight/min. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP before or after acting as a neurotransmitter, which is in turn accumulated into nerve terminals. Therefore, the uptake system may represent a possible mechanism for the inactivation of SP.  相似文献   

17.
Abstract: Substance P (SP) and SP analogues, including C-terminal, N-terminal, and C-terminus-extended analogues, have been investigated for their ability to modulate nicotine-induced secretion from bovine adrenal chromaffin cells in culture. Secretion was monitored by measuring the release of endogenous catecholamines by electrochemical detection following separation on HPLC and the release of endogenous ATP with an on-line luciferin-luciferase bioluminescence technique. SP is known to have the following two effects on nicotine-induced secretion of catecholamines (see Livett and Zhou, 1991): inhibition of the nicotinic response and protection against nicotinic desensitization. Secretion induced by 10-5M nicotine was inhibited 70-80% by SP, SP-methyl ester, and the C-terminus-extended analogue SP-Tyr12-NH2, 65% by (Ala3)SP-NH2, 45% by the C-terminal analogue SP(4-11), and 20 and 5% by the N-terminal analogues SP(1-7) and SP(1-5), respectively, when these peptides were present at 3 ×; 10-5M concentrations. The order of potency was SP = SP-methyl ester = SP-Tyr12-NH2 > (Ala3)SP-NH2 > SP(4-11) > SP(1-7) > SP(1-5). SP, SP-methyl ester, and (Ala3)SP-NH2 protected against nicotinic desensitization by 40-55%, and SP(4-11) protected by 20% (all at 3 ×; 10-5M). In contrast, the N-terminal analogues SP(1-7) and SP(1-5) and the C-terminus-extended analogue SP-Tyr12-NH2 at 3 × 10-5M did not protect against nicotinic desensitization. Cyclo-SP(3-9), Ac-SP(3-9)-NH2, SP(3-9), and SP(3-6) had neither inhibitory nor facilitatory effects on secretion. Of the 20 SP analogues extended at the C terminus by one amino acid, there were only three that protected against nicotinic desensitization, whereas the majority inhibited nicotine-evoked catecholamine secretion. The present work indicates that for inhibition of nicotine-evoked secretion, both the C terminus and N terminus of SP are necessary. For the protection against nicotine-induced desensitization, the C terminus of SP is important. This suggests that the two mechanisms, inhibition of nicotine-evoked secretion and protection against nicotinic desensitization, are regulated independently.  相似文献   

18.
Circulating 3beta-hydroxysteroids including dehydroepiandrosterone (DHEA) are 7alpha-hydroxylated by the cytochrome P450-7B1 in the liver, skin and brain, which are the target organs of glucocorticoids. Anti-glucocorticoid effects with 7alpha-hydroxy-DHEA were observed in vivo without an interference with glucocorticoid binding to its receptor. In the organs mentioned above, the circulating inactive cortisone was reduced into active cortisol by the 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). We demonstrated that 7alpha-hydroxy-DHEA was also a substrate for this enzyme. Studies of the 11beta-HSD1 action on 7alpha-hydroxy-DHEA showed the reversible production of 7beta-hydroxy-DHEA through an intermediary 7-oxo-DHEA, and the kinetic parameters favored this production over that of active glucocorticoids. Both the production of 7alpha-hydroxysteroids and their interference with the activation of cortisone into cortisol are basic to the concept of native anti-glucocorticoids efficient at their production site. This opens a promising new area for research.  相似文献   

19.
Substance P (SP), physalaemin, SP4-11, SP5-11 and the SP5-11 analog DiMe-C7 induce an antinociceptive effect in rats after intraventricular administration. Other tachykinins and the N-terminal fragments of SP are inactive. All antinociceptive peptides increase the Met-enkephalin efflux from slices of rat periaqueductal gray matter and their antinociceptive potency is correlated with their capacity to release Met-enkephalin. The results, discussed in the light of current theories on different tachykinin receptors, suggest that the SP-P receptor subtype may be involved in the control of noxious stimulation elicited by SP at supraspinal levels.  相似文献   

20.
O Laneuville  J Dorais  R Couture 《Life sciences》1988,42(13):1295-1305
In the awake restrained rat the intrathecal (i.th.) administration of 6.5 pmol-40 nmol of substance P (SP), neurokinin A (NKA) or one of two selective NK-1 receptor agonists [Pro9, Met(O2)11]SP, denoted ana1 and [beta-Ala4, Sar9, Met(O2)11]SP , denoted ana2 decreased reaction time (RT) to a noxious radiant heat stimulus in a dose-related manner. The following rank order of potency was observed in relation to this response: ana1 = ana2 greater than SP much greater than NKA. The decrement of tail-flick latency was greatest at 1 min and RT returned to the basal level within 6-11 min post-administration. However, in some rats SP produced a small increase in RT (anti-nociception) at 6-11 min post-administration. The i.th. administration of neurokinin B (NKB) or a selective NK-3 receptor agonist [beta-Asp4, MePhe7]NKB), denoted ana3 induced an antinociceptive effect which was greatest at 1 min and lasted less than 11 min after NKB or more than 30 min after ana3 administration. The magnitude of the increase in RT produced by 65 pmol-40 nmol doses of these peptides is ana3 much greater than NKB much greater than SP. The effect of NKB (8.0 nmol) was significantly blocked (P less than 0.005) by prior i.th. administration of naloxone (opioid antagonist) but not by idazoxan (alpha 2-adrenoceptor antagonist), [Thi5,8, D-Phe7]BK (kinin antagonist), or following bilateral adrenalectomy. From these results, we conclude that NKB-induced antinociception is mediated by the spinal release of an opioid and not through a BK or NA mechanism. The results also suggest that the nociceptive and antinociceptive effects of neuro-kinins are mediated by the activation of NK-1 and NK-3 receptor subtypes respectively, in the rat spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号