首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To compare patterns of expression between the Ngrol genes ofN. glauca and the Rirol genes of Agrobacterium rhizogenes, weperformed fluorometric and histochemical analysis of transgenicgenetic tumors on the hybrid of Nicotiana glauca x N. langsdorffü(Fl) that harbored a rß- glucuronidase (GUS) reportergene fused to the promoter of NgrolB, NgrolC, RirolB or RirolC The promoters of NgrolB and NgrolCNgrolC had 2- to 3-fold loweractivity than those of RirolB and RirolC However, the changesin patterns of GUS activity caused by deletion of NgrolB andNgrolCpromoters were similar to those of RirolB and RirolC promoters.This result suggests that the cis-acting sequences that regulatethe level of expression of RirolB and RirolC are conserved inthe NgrolB and NgrolC promoters. Furthermore, an auxin dependent(NAA-dependent) increase in GUS activity was observed in thecase of NgrolB-GUS and RirolB-GUS. Histochemical analysis showedGUS activity encoded by both NgrolB-GUS and RirolB-GUS in normal-typeFl transgenic plants was located in meristematic zones, whilethat encoded by NgrolC-GUS and RirolC-GUS was detected mainlyin vascular systems of various organs. Thus, the patterns ofexpression of the Ngrol genes were the same as those of theRirol genes in terms of promotion by auxin and tissue-specificity,indicating that regulatory mechanisms for both sets of geneshave been conserved during the evolution of the genus Nicotianaafter transfer from a progenitor of Agrobacterium to that ofNicotiana. (Received May 2, 1995; Accepted June 13, 1995)  相似文献   

2.
Comparison of the frequency of rooting in the tobacco leaf segmentsinoculated with Agrobacterium tumefaciens harboring variouscombinations of rolB, rolC, ORF13 and ORF14 of TL-DNA of Riplasmid (pRiHRI) revealed that the genes differ in their functionto stimulate adventitious root induction. A single gene rolBinduced roots, while rolC, ORF13 and ORF14 independently promotedthe root induction by the rolB gene. The effects of these geneson the rolB-mediated rooting were in the order of ORF13>rolCORF14. Present address: Laboratory of Phylogenetic Botany, Departmentof Biology, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba,263-8522 Japan. 2 Present address: Department of Chemical and Biological Sciences,Faculty of Science, Japan Women's University, 2-8-1 Mejirodai,Bunkyo-ku, Tokyo, 112-8681 Japan.  相似文献   

3.
4.
5.
Agrobacteria carrying mutations at the auxin-biosynthesizing loci (iaaH and iaaM of the Ti plasmid) induce shoot-forming tumors on many plant species. In some cases, e.g. Nicotiana glutinosa L., tumors induced by such mutant strains exhibit an unorganized and fully autonomous phenotype. These characteristics are stable in culture at both the tissue and cellular level. We demonstrate that the cytokinin-biosynthesis gene (ipt) of the Ti plasmid is responsble for the induction of both auxin and cytokinin autonomy in N. glutinosa. Cloned cell lines carrying an ipt gene but lacking iaaH and iaaM are capable of accumulating indole-3-acetic acid. Interestingly, non-transformed N. glutinosa tissues exhibit an auxin-requiring phenotype when they are grown on medium supplemented with an exogenous supply of cytokinin. These results strongly indicate that exogenously supplied cytokinin does not mimic all the effects of the expression of the ipt gene in causing the auxin-autonomous growth of N. glutinosa cells.Abbreviations FW fresh weight - IAA indole-3-acetic acid - I6 Ado isopentenyladenosine - kb kilobase - MS Murashige and Skoog (medium) - NAA -naphthaleneacetic acid - NAM -naphthaleneacetamide - T-DNA transferred DNA  相似文献   

6.
7.
Two kinds of cellular responses to auxin, the hyperpolarization of protoplasts and the division of protoplast-derived cells, were compared in Nicotiana tabacum plants transformed by different T-DNA fragments of Agrobacterium rhizogenes strain A4. Using transmembrane potential difference measurements to characterize hormonal sensitivity of mesophyll protoplasts, we found a 30-fold increase in sensitivity to auxin in protoplasts transformed by the whole Ri A4 T-DNA. Furthermore, the rol genes of the Ri A4 TL-DNA, together or as single genes, were able to increase the sensitivity to auxin by factors up to 104. The different effects of the single rol genes on the sensitivity of mesophyll protoplasts to auxin, rolB being the most powerful, were consistent with their respective rhizogenic effects on leaf fragments (A Spena, T Schmülling, C Koncz, J Schell [1987] EMBO J 6: 3891-3899). No difference was seen concerning the effects of auxin on division of cells derived from normal or transformed protoplasts. These results suggest that only some cellular responses to auxin could be selectively altered by rol genes. They also show that rol-transformed tobaccos can be a model system to study auxin action in plants.  相似文献   

8.
The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system.A major feature of eukaryotic cells is subcompartmentalization. Specific components are concentrated within restricted regions of the cell, necessitating the presence of one or more targeting mechanisms. The eukaryotic membrane-trafficking system facilitates intracellular transport of proteins and lipids between organelles and further acts to build the interface between the cell and external environment. This system touches, at some level, virtually every cellular compartment and component; its proper function is crucial for modern eukaryotes.The establishment of the membrane-trafficking system represented a tremendous milestone in the restructuring that took place during the transition from the prokaryotic to eukaryotic cellular configuration. As it does today, a membrane-trafficking system would have enhanced the ability of even the earliest eukaryotes to remodel their cell surface, export proteins to modify their external environment by exocytosis, as well as acquire nutrients by endocytosis. Subcompartmentalization of the cell and the ability to direct material to specific compartments would have allowed for intracellular specializations, for example, the sequestration of metabolic processes. Membrane trafficking also likely served to integrate fledgling endosymbiotic interactions (Flinner et al. 2013; Wideman et al. 2013), regardless of the precise timing of the mitochondrial endosymbiotic event with respect to the evolution of endogenously derived organelles (Martin and Muller 1998; Cavalier-Smith 2002; Martin and Koonin 2006; Forterre 2011). Finally, trafficking could have also facilitated a size increase for the proto-eukaryotic organisms and enabled their colonization of novel ecological niches; for example, phagocytosis is a critical function that would have been made possible by this change in morphology.In the textbook definition (e.g., Alberts 2002), the membrane-trafficking system consists of the endoplasmic reticulum, the Golgi body, trans-Golgi network (TGN), various types of endolysosomal organelles (early, recycling, and late endosomes and lysosomes/vacuoles), as well as the plasma membrane (Fig. 1A). However, recent work has uncovered greater integration between these classical membrane-trafficking compartments and other organelles including the nucleus (Dokudovskaya et al. 2009), peroxisomes (Agrawal and Subramani 2013), and even the endosymbiotic organelles, particularly the mitochondria (Braschi et al. 2010; Michel and Kornmann 2012; Sandoval and Simmen 2012). Although the molecular details of the latter are still being unearthed, much insight has been gained into the processes of transport between membrane-trafficking organelles by vesicle formation and the subsequent delivery and fusion of the transport vesicle with a target organelle.Open in a separate windowFigure 1.Eukaryotic endomembrane organelles and evolution. (A) A eukaryotic cell depicting the major endomembrane organelles and trafficking pathways (denoted by arrows). Figure created from data in Wideman et al. (2013). (B) Depiction of specificity machinery encoded by multiple components of the vesicle formation and fusion machinery. For diagrammatic simplicity only the Coats, Rabs, and SNAREs are shown. (C) The organelle paralogy hypothesis for the evolution of novel endomembrane organelles by duplication and coevolution of identity-encoding genes.The core molecular machinery for transport between endomembrane organelles consists of proteins and lipids that must, in a combinatorial manner, encode the information required for transport specificity (Cai et al. 2007). The generally accepted model for packaging of material into vesicles at a given organelle involves GTPases of the Arf/Sar family, along with a number of activating and effector proteins (Bonifacino and Glick 2004). Further to this is a requirement for cargo selection, membrane deformation, and scission involving one or more coat protein complexes (COPI, COPII, clathrin/adaptins, ESCRTs, retromer) to generate the transport carriers. Delivery of the carrier initially involves a tethering step involving Rab GTPases, and their modulating GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors, as well as multisubunit tethering complexes (MTCs). The final fusion between the transport carrier and target organelle involves additional protein families such as SNAREs and SM proteins (Bonifacino and Glick 2004). Increasingly, the lines between these various sets of machineries have been blurring, with complexes being identified composed of a mixture of proteins initially identified as involved in either vesicle formation or fusion (e.g., Miller et al. 2007; Pryor et al. 2008). To add a level of complexity, many of the aforementioned proteins are, in fact, protein families in which each paralog performs the same mechanistic role, but at defined organelles or transport pathways within the cell (Bonifacino and Glick 2004). With the number of individual components involved in the membrane-trafficking process, the interconnectivity between the machineries and organelles, and with the diversity of eukaryotic organisms possessing membrane-trafficking machinery, understanding the processes of transport specificity and organelle identity benefits from a more holistic view.Evolutionary cell biology, one aspect of which is the application of comparative molecular evolutionary analysis to cell biology (Brodsky et al. 2012), is particularly valuable in addressing such sweeping questions. Using a toolkit comprising comparative genomics, molecular phylogenetics, and, more recently, mathematical modeling, it has been possible to reconstruct the characteristics and complements of the membrane-trafficking machinery in early eukaryotic ancestors. Importantly, it has been possible to validate some of these in silico predictions of function and behavior of protein components through molecular cell biological characterization in model eukaryotes beyond mammals and yeast. This provides increased confidence in predictions of ancient membrane-trafficking systems, rather than being solely reliant on deduced histories of protein families. Furthermore, by considering the evolutionary histories of trafficking components as an integrated set or cohort, it has been possible to begin deriving mechanistic models of how nonendosymbiotic organelles may evolve. Interestingly, as surveys have advanced in scope, some unexpected patterns of conservation have begun to emerge in the machinery of membrane trafficking that have shed light on the evolution of the system, but also raised questions as to the processes that have shaped it.  相似文献   

9.
The ability of six putative plant growth promoting rhizobacteria, isolated from the rhizosphere of Nicotiana glauca L., to stimulate growth and induce systemic resistance against Xanthomonas campestris CECT 95 in Arabidopsis thaliana L. Col-0 was evaluated. The six bacterial strains significantly reduced the disease symptoms caused by the pathogen compared to the controls, with the best results obtained with the Bacillus strain N11.37 and the Stenotrophomonas strain N6.8. These two strains were tested on A. thaliana NahG plants and jar1-1 and etr1-1 mutants, to elucidate whether the salicylic acid (SA)-dependent or SA-independent pathway was involved in the induction of systemic resistance. The results indicate that N6.8 induces the SA-dependent pathway. For N11.37 it is as yet not clear as in the etr1-1 mutants and NahG plants ISR is not expressed, while in jar1-1 it is. In addition, levels of SA were measured in Col-0 plants treated with N6.8 and N11.37 to confirm whether or not the two strains produced an increased level of SA. N6.8- and N11.37-induced plants showed higher levels of SA than the controls. It is concluded that N6.8 induces a SA-dependent pathway while N11.37 induces a pathway that is both ethylene (ET)- and SA-dependent.  相似文献   

10.
Agrobacterium-mediated plant transformation is an extremely complex and evolved process involving genetic determinants of both the bacteria and the host plant cells. However, the mechanism of the determinants remains obscure, especially in some cereal crops such as wheat, which is recalcitrant for Agrobacterium-mediated transformation. In this study, differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed in wheat callus cells co-cultured with Agrobacterium by using RNA sequencing (RNA-seq) and two-dimensional electrophoresis (2-DE) in conjunction with mass spectrometry (MS). A set of 4,889 DEGs and 90 DEPs were identified, respectively. Most of them are related to metabolism, chromatin assembly or disassembly and immune defense. After comparative analysis, 24 of the 90 DEPs were detected in RNA-seq and proteomics datasets simultaneously. In addition, real-time RT-PCR experiments were performed to check the differential expression of the 24 genes, and the results were consistent with the RNA-seq data. According to gene ontology (GO) analysis, we found that a big part of these differentially expressed genes were related to the process of stress or immunity response. Several putative determinants and candidate effectors responsive to Agrobacterium mediated transformation of wheat cells were discussed. We speculate that some of these genes are possibly related to Agrobacterium infection. Our results will help to understand the interaction between Agrobacterium and host cells, and may facilitate developing efficient transformation strategies in cereal crops.  相似文献   

11.
The shooty morphology of a nontumorous amphidiploid mutant of Nicotiana glauca Grah. x N. langsdorffii Weinm. was restored by cytokinins, whether exogenously applied or endogenously produced by transformation of the mutant with a transfer DNA (T-DNA) cytokinin-biosynthesis gene (isopentenyltransferase; ipt). Auxins alone did not confer this effect. Similar transformation was not achieved for the parental species. In the case of transformation with the ipt gene, selection of the transformed tissues was based on its hormone-independent growth in the presence of the antibiotic kanamycin. Transformed tissues exhibited a shooty morphology, indistinguishable from that of wildtype genetic tumors N. glauca x N. langsdorffii. This altered phenotype was caused by the presence and constitutive expression of the ipt gene. The insertion and expression of this gene in transformed tissues was confirmed by using the polymerase chain reaction (PCR) technique as well as conventional molecular hybridization analysis. Expression of the ipt gene led to an elevated level of cytokinin in the transformed mutant tissues. This evidence supports the notion that genetic tumors are caused, at least in part, by elevated levels of cytokinin in interspecific hybrids.  相似文献   

12.
《遗传学报》2015,42(1)
<正>Transition from a nocturnal to a diurnal lifestyle represents a major shift in primate evolution,plays a central role in the adaptation of these species to new habitats,and is involved in modifications to their physiological and social behaviors(Heesy and Ross,2001;Shultz et al.,2011).However,two core problems concerning the circadian rhythm transition r  相似文献   

13.
Compared with the X chromosome, the mammalian Y chromosome is considerably diminished in size and has lost most of its ancestral genes during evolution. Interestingly, for the X-degenerate region on the Y chromosome, human has retained all 16 genes, while chimpanzee has lost 4 of the 16 genes since the divergence of the two species. To uncover the evolutionary forces governing ape Y chromosome degeneration, we determined the complete sequences of the coding exons and splice sites for 16 gorilla Y chromosome genes of the X-degenerate region. We discovered that all studied reading frames and splice sites were intact, and thus, this genomic region experienced no gene loss in the gorilla lineage. Higher nucleotide divergence was observed in the chimpanzee than the human lineage, particularly for genes with disruptive mutations, suggesting a lack of functional constraints for these genes in chimpanzee. Surprisingly, our results indicate that the human and gorilla orthologues of the genes disrupted in chimpanzee evolve under relaxed functional constraints and might not be essential. Taking mating patterns and effective population sizes of ape species into account, we conclude that genetic hitchhiking associated with positive selection due to sperm competition might explain the rapid decline in the Y chromosome gene number in chimpanzee. As we found no evidence of positive selection acting on the X-degenerate genes, such selection likely targets other genes on the chimpanzee Y chromosome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The Origin and Evolution of Cultures. Robert Boyd and Peter J. Richerson. New York: Oxford University Press, 2005. 456 pp.
Not by Genes Alone: How Culture Transformed Human Evolution. Peter J. Richerson and Robert Boyd. Chicago: University of Chicago Press, 2005. 332 pp.  相似文献   

15.
16.
McHale NA 《The Plant cell》1993,5(9):1029-1038
Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells.  相似文献   

17.
A remarkable diversity of venom peptides is expressed in the genus Conus (known as “conotoxins” or “conopeptides”). Between 50 and 200 different venom peptides can be found in a single Conus species, each having its own complement of peptides. Conopeptides are encoded by a few gene superfamilies; here we analyze the evolution of the A-superfamily in a fish-hunting species clade, Pionoconus. More than 90 conopeptide sequences from 11 different Conus species were used to build a phylogenetic tree. Comparison with a species tree based on standard genes reveals multiple gene duplication events, some of which took place before the Pionoconus radiation. By analysing several A-conopeptides from other Conus species recorded in GenBank, we date the major duplication events after the divergence between fish-hunting and non-fish-hunting species. Furthermore, likelihood approaches revealed strong positive selection; the magnitude depends on which A-conopeptide lineage and amino-acid locus is analyzed. The four major A-conopeptide clades defined are consistent with the current division of the superfamily into families and subfamilies based on the Cys pattern. The function of three of these clades (the κA-family, the α4/7-subfamily, and α3/5-subfamily) has previously been characterized. The function of the remaining clade, corresponding to the α4/4-subfamily, has not been elucidated. This subfamily is also found in several other fish-hunting species clades within Conus. The analysis revealed a surprisingly diverse origin of α4/4 conopeptides from a single species, Conus bullatus. This phylogenetic approach that defines different genetic lineages of Conus venom peptides provides a guidepost for identifying conopeptides with potentially novel functions.  相似文献   

18.
利用美国国家生物技术信息中心(NCBI)网站所提供的相关信息,分析T-phylloplanin基因编码蛋白。该基因全长861hp,有一个完整的330hp的开放读框,编码110个氨基酸。该基因编码蛋白分子量为11.31kD,理论等电点为7.74。其氨基酸残基的不同区域分布有多N-糖基化位点、酪蛋白激酶Ⅱ磷酸化位点和N-肉豆蔻酰化位点,还有一个跨膜信号肽。T-phylloplanin基因编码蛋白与烟草叶片短柄腺毛分泌的抗性蛋白具有高度的同源性(93%),显示它在烟草抗性系统研究中有潜在价值。  相似文献   

19.
Glutamine synthetase type I (GSI) genes have previously been described only in prokaryotes except that the fungus Emericella nidulans contains a gene (fluG) which encodes a protein with a large N-terminal domain linked to a C-terminal GSI-like domain. Eukaryotes generally contain the type II (GSII) genes which have been shown to occur also in some prokaryotes. The question of whether GSI and GSII genes are orthologues or paralogues remains a point of controversy. In this article we show that GSI-like genes are widespread in higher plants and have characterized one of the genes from the legume Medicago truncatula. This gene is part of a small gene family and is expressed in many organs of the plant. It encodes a protein similar in size and with between 36 and 46% amino acid sequence similarity to prokaryotic GS proteins used in the analyses, whereas it is larger and with less than 25% similarity to GSII proteins, including those from the same plant species. Phylogenetic analyses suggest that this protein is most similar to putative proteins encoded by expressed sequence tags of other higher plant species (including dicots and a monocot) and forms a cluster with FluG as the most divergent of the GSI sequences. The discovery of GSI-like genes in higher plants supports the paralogous evolution of GSI and GSII genes, which has implications for the use of GS in molecular studies on evolution. Received: 4 May 1999 / Accepted: 17 September 1999  相似文献   

20.
Agrobacterium uses a mechanism similar to conjugation for trans-kingdom transfer of its oncogenic T-DNA. A defined VirB/VirD4 Type IV secretion system is responsible for such a genetic transfer. In addition, certain virulence proteins as VirE2 can be mobilized into host cells by the same apparatus. VirE2 is essential to achieve plant but not yeast transformation. We found that the limited host range plasmid CloDF13 can be recruited by the virulence apparatus of Agrobacterium for transfer to eukaryotic hosts. As expected the VirB transport complex was required for such trans-kingdom DNA transfer. However, unexpectedly, the coupling factor VirD4 turned out to be necessary for transfer to plants but not for transport into yeast. The CloDF13 encoded coupling factor (Mob) was essential for transfer to both plants and yeast though. This is interpreted by the different specificities of Mob and VirD4. Hence, Mob being required for the transport of the CloDF13 transferred DNA (to both plants and yeast) and VirD4 being required for transport of virulence proteins such as VirE2. Nevertheless, the presence of the VirE2 protein in the host plant was not sufficient to restore the deficiency for VirD4 in the transforming bacteria. We propose that Mob functions encoded by the plasmid CloDF13 are sufficient for DNA mobilization to eukaryotic cells but that the VirD4-mediated pathway is essential to achieve DNA nuclear establishment specifically in plants. This suggests that other Agrobacterium virulence proteins besides VirE2 are translocated and essential for plant transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号