首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse is the most extensively used mammalian model for biomedical and aging research, and an extensive catalogue of laboratory resources is available to support research using mice: classical inbred lines, genetically modified mice (knockouts, transgenics, and humanized mice), selectively bred lines, consomics, congenics, recombinant inbred panels, outbred and heterogeneous stocks, and an expanding set of wild-derived strains. However, these resources were not designed or intended to model the heterogeneous human population or for a systematic analysis of phenotypic effects due to random combinations of uniformly distributed natural variants. The Collaborative Cross (CC) is a large panel of recently established multiparental recombinant inbred mouse lines specifically designed to overcome the limitations of existing mouse genetic resources for analysis of phenotypes caused by combinatorial allele effects. The CC models the complexity of the human genome and supports analyses of common human diseases with complex etiologies originating through interactions between allele combinations and the environment. The CC is the only mammalian resource that has high and uniform genomewide genetic variation effectively randomized across a large, heterogeneous, and infinitely reproducible population. The CC supports data integration across environmental and biological perturbations and across space (different labs) and time.  相似文献   

2.
Most biological traits of human importance are complex in nature; their manifestation controlled by the cumulative effect of many genetic factors interacting with one another and with the individual’s life history. Because of this, mouse genetic reference populations (GRPs) consisting of collections of inbred lines or recombinant inbred lines (RIL) derived from crosses between inbred lines are of particular value in analysis of complex traits, since massive amounts of data can be accumulated on the individual lines. However, existing mouse GRPs are derived from inbred lines that share a common history, resulting in limited genetic diversity, and reduced mapping precision due to long-range gametic disequilibrium. To overcome these limitations, the Collaborative Cross (CC) a genetically highly diverse collection of mouse RIL was established. The CC, now in advanced stages of development, will eventually consist of about 500 RIL derived from reciprocal crosses of eight divergent founder strains of mice, including three wild subspecies. Previous studies have shown that the CC indeed contains enormous diversity at the DNA level, that founder haplotypes are inherited in expected frequency, and that long-range gametic disequilibrium is not present. We here present data, primarily from our own laboratory, documenting extensive genetic variation among CC lines as expressed in broad-sense heritability (H2) and by the well-known “coefficient of genetic variation,” demonstrating the ability of the CC resource to provide unprecedented mapping precision leading to identification of strong candidate genes.  相似文献   

3.
The JAX Diversity Outbred population is a new mouse resource derived from partially inbred Collaborative Cross strains and maintained by randomized outcrossing. As such, it segregates the same allelic variants as the Collaborative Cross but embeds these in a distinct population architecture in which each animal has a high degree of heterozygosity and carries a unique combination of alleles. Phenotypic diversity is striking and often divergent from phenotypes seen in the founder strains of the Collaborative Cross. Allele frequencies and recombination density in early generations of Diversity Outbred mice are consistent with expectations based on simulations of the mating design. We describe analytical methods for genetic mapping using this resource and demonstrate the power and high mapping resolution achieved with this population by mapping a serum cholesterol trait to a 2-Mb region on chromosome 3 containing only 11 genes. Analysis of the estimated allele effects in conjunction with complete genome sequence data of the founder strains reduced the pool of candidate polymorphisms to seven SNPs, five of which are located in an intergenic region upstream of the Foxo1 gene.  相似文献   

4.
Genome-wide association studies using commercially available outbred mice can detect genes involved in phenotypes of biomedical interest. Useful populations need high-frequency alleles to ensure high power to detect quantitative trait loci (QTLs), low linkage disequilibrium between markers to obtain accurate mapping resolution, and an absence of population structure to prevent false positive associations. We surveyed 66 colonies for inbreeding, genetic diversity, and linkage disequilibrium, and we demonstrate that some have haplotype blocks of less than 100 Kb, enabling gene-level mapping resolution. The same alleles contribute to variation in different colonies, so that when mapping progress stalls in one, another can be used in its stead. Colonies are genetically diverse: 45% of the total genetic variation is attributable to differences between colonies. However, quantitative differences in allele frequencies, rather than the existence of private alleles, are responsible for these population differences. The colonies derive from a limited pool of ancestral haplotypes resembling those found in inbred strains: over 95% of sequence variants segregating in outbred populations are found in inbred strains. Consequently it is possible to impute the sequence of any mouse from a dense SNP map combined with inbred strain sequence data, which opens up the possibility of cataloguing and testing all variants for association, a situation that has so far eluded studies in completely outbred populations. We demonstrate the colonies'' potential by identifying a deletion in the promoter of H2-Ea as the molecular change that strongly contributes to setting the ratio of CD4+ and CD8+ lymphocytes.  相似文献   

5.
Extensive genomic resources are available in the model legume Medicago truncatula. Here, we present the discovery and design of the first array of single‐nucleotide polymorphism (SNP) markers in M. truncatula through large‐scale Sanger resequencing of genomic fragments spanning the genome, in a diverse panel of 16 M. truncatula accessions. Both anonymous fragments and fragments targeting candidate genes for flowering phenology and symbiosis were surveyed for nucleotide variation in almost 230 kb of unique genomic regions. A set of 384 SNP markers was designed for an Illumina's GoldenGate assay, genotyped on a collection of 192 inbred lines (CC192) representing the geographical range of the species and used to survey the diversity of two natural populations. Finally, 86% of the tested SNPs were of high quality and exhibited polymorphism in the CC192 collection. Even at the population level, we detected polymorphism for more than 50% of the selected SNPs. Analysis of the allele frequency spectrum in the CC192 showed a reduced ascertainment bias, mostly limited to very rare alleles (frequency <0.01). The substantial polymorphism detected at the species and population levels, the high marker quality and the potential to survey large samples of individuals make this set of SNP markers a valuable tool to improve our understanding of the effect of demographic and selective factors that shape the natural genetic diversity within the selfing species Medicago truncatula.  相似文献   

6.
The potential utility of the Collaborative Cross (CC) mouse resource was evaluated to better understand complex traits related to energy balance. A primary focus was to examine if genetic diversity in emerging CC lines (pre-CC) would translate into equivalent phenotypic diversity. Second, we mapped quantitative trait loci (QTL) for 15 metabolism- and exercise-related phenotypes in this population. We evaluated metabolic and voluntary exercise traits in 176 pre-CC lines, revealing phenotypic variation often exceeding that seen across the eight founder strains from which the pre-CC was derived. Many phenotypic correlations existing within the founder strains were no longer significant in the pre-CC population, potentially representing reduced linkage disequilibrium (LD) of regions harboring multiple genes with effects on energy balance or disruption of genetic structure of extant inbred strains with substantial shared ancestry. QTL mapping revealed five significant and eight suggestive QTL for body weight (Chr 4, 7.54 Mb; CI 3.32-10.34 Mb; Bwq14), body composition, wheel running (Chr 16, 33.2 Mb; CI 32.5-38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; CI 72.2-83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4-48.1 Mb), and food intake during exercise (Chr 12, 85.1 Mb; CI 82.9-89.0 Mb). Some QTL overlapped with previously mapped QTL for similar traits, whereas other QTL appear to represent novel loci. These results suggest that the CC will be a powerful, high-precision tool for examining the genetic architecture of complex traits such as those involved in regulation of energy balance.  相似文献   

7.
Identification of genes underlying complex traits presents a challenge to which geneticists have responded with many diverse approaches. A common feature of these approaches is that different research groups must, on a case-by-case basis, replicate similar efforts in recruitment, genetic characterization, and analyses. To avoid this expensive “churning,” an alternative approach has been proposed: production of an experimental genetic reference population, the Collaborative Cross, in which both genetic diversity and mapping power are maximized. Since this population consists of inbred mouse strains, further advantages are that it is essentially infinitely reproducible; genetic characterization needs to be performed only once; and the founder strains’ genomes have been or will be sequenced, allowing imputation of allele sequences of all members of the reference population. Here we describe the establishment of such a genetic reference population, which we dub “The Gene Mine.” Over 1000 genetically distinct lines have been established, descended from eight diverse founder strains. Preliminary phenotypic ascertainment of these strains indicates unexpected variability arising from independent assortment of genetic variants. The Gene Mine will be a powerful resource for characterization of essentially any mouse phenotype that has a genetic basis.  相似文献   

8.
Eucalyptus camaldulensis is one of the most widely utilised eucalypts. It is also the only eucalypt that occurs across the Australian continent, playing a key ecological role as fauna habitat and in riverbank stabilisation. Despite its ecological and economic importance, uncertainty remains regarding the delineation of genetic and morphological variants. Nine hundred and ninety trees from 97 populations, representing the species’ geographic range were genotyped using 15 microsatellite loci and patterns of diversity compared with restriction fragment length polymorphisms in 29 of these populations. Both markers showed that despite having a riverine distribution, downstream seed dispersal has had less influence than geographic distance on dispersal patterns. Spatial patterns in the distribution of microsatellite genotypes were compared with environmental parameters and boundaries defined by river systems, drainage basins and proposed subspecies. Significant genetic differences among populations within river systems indicated that rivers should not be treated as a single genetic entity in conservation or breeding programmes. Strong geographic trends were evident with 40% of variation in genetic diversity explained by latitude and moisture index. Isolation by distance and significant correlations between genetic distance and environmental parameters for most loci suggest historical factors have had more influence than selection on current patterns of distribution of genetic diversity. Geographic structuring of molecular variation, together with congruence between genetic and morphological variation indicate that E. camaldulensis should be treated as a number of subspecies rather than a single variable taxon. High levels of genetic diversity and geographic trends in the distribution of variation provide a firm basis for further exploration of the species’ genetic resources.  相似文献   

9.
Summary Two-dimensional gel electrophoresis was employed for the protein analysis of several different mouse tissues and Drosophila. The number of protein spots detected with conventional protein dye staining techniques ranged from 110 in erythrocyte lysate to 320 in liver homogenate. Strain variation of protein spots on the gels was examined in five different tissues from two strains of inbred mice (DBA/2J and C57BL/6J) and their F1 hybrids. The protein spots which exhibited strain variation were shown to be autosomally inherited and to follow Mendelian genetics. From these analyses, it was shown that the frequencies of protein variations between these two strains of mice vary from 1 to 5% with the tissue examined. During the course of this study, the protein spots corresponding to nine muscle proteins and three testis enzymes from the mouse as well as two Drosophila enzymes were assigned on two-dimensional gels of their respective homogenates. Radioisotope labelling of Drosophila and autoradiography of the two-dimensional gels were also performed to improve the sensitivity and resolution of the technique. The potential application of two-dimensional gel electrophoresis for mutant screening as well as biochemical genetic studies is discussed.  相似文献   

10.
Although approaches for performing genome‐wide association studies (GWAS) are well developed, conventional GWAS requires high‐density genotyping of large numbers of individuals from a diversity panel. Here we report a method for performing GWAS that does not require genotyping of large numbers of individuals. Instead XP‐GWAS (extreme‐phenotype GWAS) relies on genotyping pools of individuals from a diversity panel that have extreme phenotypes. This analysis measures allele frequencies in the extreme pools, enabling discovery of associations between genetic variants and traits of interest. This method was evaluated in maize (Zea mays) using the well‐characterized kernel row number trait, which was selected to enable comparisons between the results of XP‐GWAS and conventional GWAS. An exome‐sequencing strategy was used to focus sequencing resources on genes and their flanking regions. A total of 0.94 million variants were identified and served as evaluation markers; comparisons among pools showed that 145 of these variants were statistically associated with the kernel row number phenotype. These trait‐associated variants were significantly enriched in regions identified by conventional GWAS. XP‐GWAS was able to resolve several linked QTL and detect trait‐associated variants within a single gene under a QTL peak. XP‐GWAS is expected to be particularly valuable for detecting genes or alleles responsible for quantitative variation in species for which extensive genotyping resources are not available, such as wild progenitors of crops, orphan crops, and other poorly characterized species such as those of ecological interest.  相似文献   

11.
Mating type allele distribution and phenotypic variability were investigated in field populations of Laccaria bicolor. Sporophores associated with Norway spruce (Picea abies), colonized by natural sources of inoculum and growing in a seed orchard, were sampled to obtain dikaryotic strains and assay their phenotypic variability for traits important to the symbiosis. Basid-iospores were also collected for mating type analysis of different mycelia. Four sporophore mating types were identified containing seven A and five B factors. Out-breeding efficiency was estimated at 73.8% and the population was slightly inbred. Crosses with previously characterized L. bicolor strains from two nearby populations identified in total six sporophore mating types and ten A and nine B factors, for an estimated outbreeding efficiency (85.7%) similar to previous studies of more spatially disparate Laccaria spp. populations. Dikaryotic strains were tested for mycelial growth rate, as a measure of their competitive ability, on agar media containing a soluble (NaH2PO4), or an insoluble (CaHPO4) phosphate source. Their ability to solubilize the latter was also tested to assess their relative capacity to access insoluble, inorganic phosphate. In most cases, significant variation was detected among strains from the same site for all variables. On three sites (VC4, VC5 and VC7), each determined previously to possess a uniform mycelial genotype, phenotypic variability was likely due to epigenetic variation among different strains of the same genotype. Possible evidence for dikaryon-monokaryon crosses was observed in vivo on one sample site (VC2) where adjacent mycelia shared two mating factors. The phenotypic variability of different mycelial genotypes reflected their genetic variability observed as mating type allele diversity and underlined the importance of basidiospore dispersal in introducing new genotypes into the population. The reproductive strategies of L. bicolor are discussed and compared to those of other basidiomycete species.  相似文献   

12.
Spatiotemporal diversity at 35 allozyme loci was assayed over 6 years in 1,207 individuals of wild emmer wheat (Triticum dicoccoides)from a microgeographic microsite, Ammiad, north Israel. This analysis used new methods and two additional sample sets (1988 and 1993) and previous allozymic data (1984–1987). This microsite includes four major habitats (North-facing slope, Valley, Ridge, and Karst) that show topographic and ecological heterogeneity. Significant temporal and spatial variations in allele frequencies and levels of genetic diversity were detected in the four subpopulations. Significant associations were observed among allele frequencies and gene diversities at different loci, indicating that many allele frequencies change over time in the same or opposite directions. Multiple regression analysis showed that variation in soil-water content and rainfall distribution in the growing season significantly affected 10 allele frequencies, numbers of alleles at 8 loci, and gene diversity at 4 loci. Random genetic drift and hitchhiking models may not explain such locus-specific spatiotemporal divergence and strong allelic correlation or locus correlation as well as the functional importance of allozymes. Natural ecological selection, presumably through water stress, might be an important force adaptively directing spatiotemporal allozyme diversity and divergence in wild emmer wheat at the Ammiad microsite. Received: 3 July 2000 / Accepted: 1August 2000  相似文献   

13.
We have defined 40 endogenous xenotropic virus (Xmv) loci from several common inbred strains of mice by examining provirus-cell DNA junction fragments in recombinant inbred mice. Some inbred strains carried unique proviruses, but most Xmv loci were present in several strains, indicating that many Xmv integration events preexisted modern inbreeding. It was also clear that most Xmv junction fragment variation between inbred strains resulted from independent integration events and not modification or restriction site polymorphism following integration. Chromosomal assignments were determined for 32 Xmv loci by comparing their recombinant inbred strain distribution patterns to those of known genetic markers. The Xmv loci were generally dispersed throughout the genome, but several chromosomal regions contained more than one provirus. Furthermore, several close genetic associations with cellular genes were discovered. Four Xmv loci were closely linked to Fv-1b, a dominant viral resistance gene present in C57BL/6J, BALB/cJ, A/J, and several other strains. Xmv-28 was closely linked to rd (retinal degeneration), and Xmv-10 was closely linked to a (non-agouti), both of which are old mutations as inferred from their broad distribution in mice. We suggest that Xmv integration contributed to genetic diversity in the past and that much of this diversity exists today in common laboratory strains.  相似文献   

14.
We report on the progress of a project funded by the Wellcome Trust to produce over 100 recombinant inbred mouse lines as part of the Collaborative Cross (CC) genetic reference panel. These new strains of mice are being derived from a set of eight genetically diverse founders. The genomes of the finished strains will be mosaics of the founder strains’ genomes with a high density of independent recombination breakpoints. The CC mice will be available for distribution free of any intellectual property constraints to serve as a community resource for systems genetics studies.  相似文献   

15.
Nucleotide variation in wild and inbred mice   总被引:4,自引:3,他引:1       下载免费PDF全文
Salcedo T  Geraldes A  Nachman MW 《Genetics》2007,177(4):2277-2291
The house mouse is a well-established model organism, particularly for studying the genetics of complex traits. However, most studies of mice use classical inbred strains, whose genomes derive from multiple species. Relatively little is known about the distribution of genetic variation among these species or how variation among strains relates to variation in the wild. We sequenced intronic regions of five X-linked loci in large samples of wild Mus domesticus and M. musculus, and we found low levels of nucleotide diversity in both species. We compared these data to published data from short portions of six X-linked and 18 autosomal loci in wild mice. We estimate that M. domesticus and M. musculus diverged <500,000 years ago. Consistent with this recent divergence, some gene genealogies were reciprocally monophyletic between these species, while others were paraphyletic or polyphyletic. In general, the X chromosome was more differentiated than the autosomes. We resequenced classical inbred strains for all 29 loci and found that inbred strains contain only a small amount of the genetic variation seen in wild mice. Notably, the X chromosome contains proportionately less variation among inbred strains than do the autosomes. Moreover, variation among inbred strains derives from differences between species as well as from differences within species, and these proportions differ in different genomic regions. Wild mice thus provide a reservoir of additional genetic variation that may be useful for mapping studies. Together these results suggest that wild mice will be a valuable complement to laboratory strains for studying the genetics of complex traits.  相似文献   

16.
The mouse is the leading organism for disease research. A rich resource of genetic variation occurs naturally in inbred and special strains owing to spontaneous mutations. However, one can also obtain desired gene mutations by using the following processes: targeted mutations that eliminate function in the whole organism or in a specific tissue; forward genetic screens using chemicals or transposons; or the introduction of exogenous transgenes as DNAs, bacterial artificial chromosomes (BACs) or reporter constructs. The mouse is the only mammal that provides such a rich resource of genetic diversity coupled with the potential for extensive genome manipulation, and is therefore a powerful application for modeling human disease. This poster review outlines the major genome manipulations available in the mouse that are used to understand human disease: natural variation, reverse genetics, forward genetics, transgenics and transposons. Each of these applications will be essential for understanding the diversity that is being discovered within the human population.  相似文献   

17.
C F Baer 《Genetics》1999,152(2):653-659
Variation among loci in the distribution of allele frequencies among subpopulations is well known; how to tell when the variation exceeds that expected when all loci are subject to uniform evolutionary processes is not well known. If locus-specific effects are important, the ability to detect those effects should vary with the level of gene flow. Populations with low gene flow should exhibit greater variation among loci in Fst than populations with high gene flow, because gene flow acts to homogenize allele frequencies among subpopulations. Here I use Lewontin and Krakauer's k statistic to describe the variance among allozyme loci in 102 published data sets from fishes. As originally proposed, k > 2 was considered evidence that the variation in Fst among loci is greater than expected from neutral evolution. Although that interpretation is invalid, large differences in k in different populations suggest that locus-specific forces may be important in shaping genetic diversity. In these data, k is not greater for populations with expected low levels of gene flow than for populations with expected high levels of gene flow. There is thus no evidence that locus-specific forces are of general importance in shaping the distribution of allele frequencies at enzyme loci among populations of fishes.  相似文献   

18.
Laboratory mice are valuable in biomedical research in part because of the extraordinary diversity of genetic resources that are available for studies of complex genetic traits and as models for human biology and disease. Chromosome substitution strains (CSSs) are important in this resource portfolio because of their demonstrated use for gene discovery, genetic and epigenetic studies, functional characterizations, and systems analysis. CSSs are made by replacing a single chromosome in a host strain with the corresponding chromosome from a donor strain. A complete CSS panel involves a total of 22 engineered inbred strains, one for each of the 19 autosomes, one each for the X and Y chromosomes, and one for mitochondria. A genome survey simply involves comparing each phenotype for each of the CSSs with the phenotypes of the host strain. The CSS panels that are available for laboratory mice have been used to dissect a remarkable variety of phenotypes and to characterize an impressive array of disease models. These surveys have revealed considerable phenotypic diversity even among closely related progenitor strains, evidence for strong epistasis and for heritable epigenetic changes. Perhaps most importantly, and presumably because of their unique genetic constitution, CSSs, and congenic strains derived from them, the genetic variants underlying quantitative trait loci (QTLs) are readily identified and functionally characterized. Together these studies show that CSSs are important resource for laboratory mice.  相似文献   

19.
Detailed information about the geographic distribution of genetic and genomic variation is necessary to better understand the organization and structure of biological diversity. In particular, spatial isolation within species and hybridization between them can blur species boundaries and create evolutionary relationships that are inconsistent with a strictly bifurcating tree model. Here, we analyse genome‐wide DNA sequence and genetic ancestry variation in Lycaeides butterflies to quantify the effects of admixture and spatial isolation on how biological diversity is organized in this group. We document geographically widespread and pervasive historical admixture, with more restricted recent hybridization. This includes evidence supporting previously known and unknown instances of admixture. The genome composition of admixed individuals varies much more among than within populations, and tree‐ and genetic ancestry‐based analyses indicate that multiple distinct admixed lineages or populations exist. We find that most genetic variants in Lycaeides are rare (minor allele frequency <0.5%). Because the spatial and taxonomic distributions of alleles reflect demographic and selective processes since mutation, rare alleles, which are presumably younger than common alleles, were spatially and taxonomically restricted compared with common variants. Thus, we show patterns of genetic variation in this group are multifaceted, and we argue that this complexity challenges simplistic notions concerning the organization of biological diversity into discrete, easily delineated and hierarchically structured entities.  相似文献   

20.
Complex traits, like the susceptibility to common diseases, are controlled by numerous genomic regions which individual effect is generally weak. These observations led geneticists to develop an experimental system to dissect the genetic of complex traits in the mouse. The Collaborative Cross (CC) is a genetic reference population of over 300 inbred lines derived from eight inbred strains of three Mus musculus sub-species that captures 90% of the genetic variation known in the mouse genome. We present here the generation and the characteristics of the CC and we report the results of the first experiments with partially inbred CC lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号