首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soluble and membrane-bound neurospecific Con A-binding glycoproteins from human brain and tumours were identified and characterized, using a procedure which included stepwise extraction with low and high ionic strength buffers, buffered. Triton X-100 and sodium deoxycholate followed by ConA-Sepharose column chromatography, SDS-PAAG electrophoresis and immunoblotting. Adsorbed antisera against different types of neurospecific glycoproteins were used. The bulk of neurospecific glycoproteins (11 and 13) were revealed in protein fractions extracted with low ionic strength buffers and Triton X-100. In astrocytomas and glyoblastomas, some neurospecific glycoproteins were absent. Some glycoproteins were found in tumours, but were absent in brain tissue. Soluble, 77 kD glycoprotein, 11 and 16 kD glycoproteins solubilized with high ionic strength buffers and intrinsic membrane-bound 51, 57, 61, 74 and 77 kD glycoproteins can be viewed as stable neurospecific markers in malignant brain tumours.  相似文献   

2.
We have shown that enzymatic removal of N-linked glycans from human immunodeficiency virus type 1 (HIV-1) recombinant envelope glycoproteins gp160 and gp120 produced in BHK-21 cells did not significantly reduce their ability to bind to CD4, the cellular receptor for the virus. Because recombinant proteins may behave differently from proteins present on virions, we investigated whether such viral envelope glycoproteins either in a purified form or present on viral particles could be deglycosylated by treatment with an endoglycosidase F-N-glycanase mixture which cleaves all accessible glycan moieties. Endoglycosidase analysis of the carbohydrate composition of purified viral gp120 (vgp120) indicated a glycosylation pattern similar to that for recombinant gp120 (rgp120), and treatment with endoglycosidase F-N-glycanase resulted in comparable molecular weight (MW) reduction for both molecules. Similarly, after immunoblotting of the deglycosylated viral preparation, the characteristic 160- and 120-kilodalton (kDa) bands were replaced by 90- and 60-kDa bands, respectively. The apparent MW of gp41 shifted to 35 kDa. These results are consistent with complete deglycosylation. The immunoreactive conformation of envelope glycoproteins remained unaltered after deglycosylation: they were recognized to the same extent by specific human polyclonal or mouse monoclonal antibodies, and no proteolysis of viral proteins occurred during enzymatic treatment. Deglycosylation of vgp120 resulted in a less than 10-fold reduction of the ability to bind to CD4, presented either in a soluble form or at the cell membrane. In addition, deglycosylation significantly reduced, but did not abolish, HIV-1 binding to and infectivity of CD4+ cells as determined, respectively, by an indirect immunofluorescence assay and a quantitative dose-response infection assay. Taken together, these results indicate that removal of glycans present on mature envelope glycoproteins of HIV-1 diminishes but does not abolish either virus binding to CD4 or its capacity to infect CD4+ cells.  相似文献   

3.
Peptide:N-glycanase catalyzes the detachment of N-linked glycan chains from glycopeptides or glycoproteins by hydrolyzing the β-aspartylglucosaminyl bond. Peptide:N-glycanase in yeast binds to Rad23p through its N-terminus. In this study, the complex formed between Peptide:N-glycanase and Rad23p was found to exhibit enhanced deglycosylation activity, which suggests an important role for this enzyme in the misfolded glycoprotein degradation pathway in vivo. To investigate the role of this enzyme in this pathway, we made stepwise deletions of the N-terminal helices of peptide:N-glycanase. Enzymatic analysis of the deletion mutants showed that deletion of the N-terminal H1 helix (Png1p-ΔH1) enhanced the deglycosylation activity of N-glycanase towards denatured glycoproteins. In addition, this mutant exhibited high deglycosylation activity towards native glycoproteins. Dynamic simulations of the wild type and N-terminal H1 deletion mutant implied that Png1p-ΔH1 is more flexible than wild type Png1p. The efficient deglycosylation of Png1p-ΔH1 towards native and non-native glycoproteins offers a potential biotechnological application.  相似文献   

4.
Peptide: N-glycosidase from Flavobacterium meningosepticum was isolated in a homogeneous state and its physico-chemical characterization was accomplished. The reliability of the previously recorded assay procedures was assessed. Using an octaglycopeptide derived from ovomucoid a rapid and sensitive FPLC method was developed for the assay of enzymatic activity. Peptide: N-glycosidase was found to effect deglycosylation of glycoproteins bearing complex and/or multiantennary glycans even in their native state. In contrast, glycoproteins with high mannose and/or hybrid carbohydrates required denaturation to become susceptible to deglycosylation by the enzyme.  相似文献   

5.
Characterization of glycoproteins using mass spectrometry ranges from determination of carbohydrate-protein linkages to the full characterization of all glycan structures attached to each glycosylation site. In a novel approach to identify N-glycosylation sites in complex biological samples, we performed an enrichment of glycosylated peptides through hydrophilic interaction liquid chromatography (HILIC) followed by partial deglycosylation using a combination of endo-beta-N-acetylglucosaminidases (EC 3.2.1.96). After hydrolysis with these enzymes, a single N-acetylglucosamine (GlcNAc) residue remains linked to the asparagine residue. The removal of the major part of the glycan simplifies the MS/MS fragment ion spectra of glycopeptides, while the remaining GlcNAc residue enables unambiguous assignment of the glycosylation site together with the amino acid sequence. We first tested our approach on a mixture of known glycoproteins, and subsequently the method was applied to samples of human plasma obtained by lectin chromatography followed by 1D gel-electrophoresis for determination of 62 glycosylation sites in 37 glycoproteins.  相似文献   

6.
Lower assayed levels of heifer uterine estrogen receptor (ER) occur at physiologic ionic strength when ER is separated from [3H]estradiol by Dextran-coated charcoal treatments, or by gel filtration on Sephadex or polyacrylamide resins. The assayed level of charged ER in buffers containing 150-200 mM ionic strength is approximately one-half that of ER levels assayed in buffers either at 0-50 or 400-450 mM ionic strength. Treatment of ER with trypsin or molybdate eliminates this observed reduction. Evidence is presented that the decrease results from a preferential adsorption of ER to the assay resins at 150-200 mM ionic strength. This adsorption is likely to be mediated by a hydrophobic region of the ER, which is removed by trypsin cleavage.  相似文献   

7.
Isolated human erythrocyte membranes crenate when suspended in isotonic medium, but can use MgATP to reduce their net positive curvature, yielding smooth discs and cup forms that eventually undergo endocytosis. An earlier report from this laboratory (Patel, V.P. and Fairbanks, G. (1981) J. Cell Biol. 88, 430-440), has described a phenomenon of ATP-independent shape change in which ghosts prepared by hemolysis and washing in synthetic zwitterionic buffers crenated at 0 degree C, but underwent conversion to smooth discs and cups when warmed in the absence of MgATP. We have further explored the effect of the hemolysis condition on the requirement for ATP in ghost shape change. 25 hemolysis buffers were applied at 10 mM (pH 7.4, 0 degree C). Eight anionic buffers with relatively high ionic strength (e.g., phosphate and diethylmalonic acid (DMA] yielded ghosts requiring ATP for shape change, while two cationic buffers (Bistris and imidazole) and ten synthetic zwitterionic buffers (e.g., Tricine and Hepes) with lower ionic strength produced ghosts that smoothed spontaneously at 30 degrees C. Hemolysis at intermediate ionic strength yielded mixed populations in which spontaneous smoothing was expressed in all-or-none fashion. Maximal ATP-independent shape change was induced by hemolysis at pH 7.3-7.7, while ATP was required after hemolysis at pH less than or equal to 7.1 even when the ionic strength at hemolysis was low. Ghosts requiring ATP could be converted to ATP independence by washing at low ionic strength, but ATP independence could not be reversed readily by washing at high ionic strength. Exposure to low ionic strength at pH greater than 7.1 presumably changes membrane organization in a way that alters the temperature dependence of tensions within the bilayer or skeleton of the composite membrane.  相似文献   

8.
Trypanosome variant surface glycoproteins (VSGs) exemplify a class of eukaryotic cell-surface glycoproteins that rely on a covalently attached lipid, glycosyl-phosphatidylinositol, for membrane attachment. The glycolipid anchor is acquired soon after translation of the polypeptide, apparently by replacement of a short sequence of carboxyl-terminal amino acids with a precursor glycolipid. A candidate glycolipid precursor (P2) and a related glycolipid (P3) have been identified in polar lipid extracts from trypanosomes. Both lipids are glycosylphosphatidylinositol species containing a Man3GlcN core glycan indistinguishable from the backbone sequence of the VSG glycolipid anchor. We and others have recently described the cell-free synthesis of P2, P3, and a spectrum of putative biosynthetic lipid intermediates using crude preparations of trypanosome membranes. In this paper we use these preparations to show that all three mannose residues in the glycosyl-phosphatidylinositol glycan are derived from dolichol-P-mannose.  相似文献   

9.
Tobacco-based transient expression was employed to elucidate the impact of differential targeting to subcellular compartments on activity and quality of gastric lipase as a model for the production of recombinant glycoproteins in plants. Overall N-linked glycan structures of recombinant lipase were analyzed and for the first time sugar structures of its four individual N-glycosylation sites were determined in situ by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) on a trypsin digest without isolation or deglycosylation of the peptides. Three glycosylation sites contain both complex-type N-glycans and high-mannose-type structures, the fourth is exclusively linked to high-mannose glycans. Although the overall pattern of glycan structures is influenced by the targeting, our results show that the type of glycans found linked to a given Asn residue is largely influenced by the physico-chemical environment of the site. The transient tobacco system combined with MALDI-TOF-MS appears to be a useful tool for the evaluation of glycoprotein production in plants.  相似文献   

10.
Changes in the rigidity of the polymetric chain of phage lambda double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10(-2) M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of lambda phage DNA only.  相似文献   

11.
Zimmerman DC 《Plant physiology》1968,43(10):1656-1660
The delay in, or loss of, flaxseed lipoxidase activity in N-tris (hydroxymethyl) methylglycine and N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid buffers with linolenic acid as a substrate appears due to an alteration of the lipid micelle. Flaxseed lipoxidase activity is dependent on the ionic strength of the assay solution. These effects are not observed with linoleic acid as substrate. The influence of these 2 buffers on linolenic acid micelles may have a direct bearing on recent reports of chloroplast structure and activity in these buffers.  相似文献   

12.
13.
A cytoplasmic peptide: N-glycanase (PNGase) has been implicated in the proteasomal degradation of aberrant glycoproteins synthesized in the endoplasmic reticulum. The reaction is believed to be important for subsequent proteolysis by the proteasome since bulky N-glycan chains on misfolded glycoproteins may impair their efficient entry into the interior of the cylinder-shaped 20S proteasome, where its active site resides. This cytoplasmic enzyme was first detected in 1993 by a simple, sensitive assay method using 14C-labeled glycopeptide as a substrate. The deglycosylation reaction by PNGase brings about two major changes on substrate the peptide; one is removal of the N-glycan chain and the other is the introduction of a negative charge into the core peptide by converting the glycosylated asparagine residue(s) into an aspartic acid residue(s). The assay method we developed monitors these major changes in the core peptide, and the respective changes were detected by distinct analytical methods: i.e., paper chromatography and paper electrophoresis. This chapter will describe the simple, sensitive in vitro assay method for PNGase.  相似文献   

14.
The 3'-end of the RNA genome of turnip yellow mosaic virus can form a pseudoknotted tRNA-like structure that can be recognized by several tRNA-specific enzymes. We have found that the catalytic RNA component of Bacillus subtilis RNase P can cleave this structure in unusually low ionic strength buffers at a site analogous to the 5'-end of an aminoacyl stem of a tRNA. Most other precursors can only be processed under low ionic strength conditions if the RNase P holoenzyme is used; processing by the catalytic RNA component alone requires a higher ionic strength buffer. The cleavage of the turnip yellow mosaic virus tRNA-like structure demonstrates the importance of the substrate in determining the optimal buffer conditions for this reaction and also shows that high ionic strength buffers are not always necessary for cleavage by the catalytic RNA.  相似文献   

15.
Capnocytophaga canimorsus, a commensal bacterium of the canine oral flora, has been repeatedly isolated since 1976 from severe human infections transmitted by dog bites. Here, we show that C. canimorsus exhibits robust growth when it is in direct contact with mammalian cells, including phagocytes. This property was found to be dependent on a surface-exposed sialidase allowing C. canimorsus to utilize internal aminosugars of glycan chains from host cell glycoproteins. Although sialidase probably evolved to sustain commensalism, by releasing carbohydrates from mucosal surfaces, it also contributed to bacterial persistence in a murine infection model: the wild type, but not the sialidase-deficient mutant, grew and persisted, both when infected singly or in competition. This study reveals an example of pathogenic bacteria feeding on mammalian cells, including phagocytes by deglycosylation of host glycans, and it illustrates how the adaptation of a commensal to its ecological niche in the host, here the dog's oral cavity, contributes to being a potential pathogen.  相似文献   

16.
The equilibrium constants of the glutamate dehydrogenase systems   总被引:8,自引:8,他引:0  
1. Equilibrium constants for the oxidation of glutamate by NAD(+) and NADP(+), catalysed by glutamate dehydrogenase, have been measured in phosphate buffers of different ionic strengths and at several temperatures. 2. The equilibrium constants for both systems vary markedly with ionic strength. Thermodynamic values for the two systems obtained by extrapolation to zero ionic strength differ significantly from one another. The standard free-energy change for NADP(+) reduction has been calculated from that for NAD(+) reduction. 3. The heat of reaction has been estimated and is the same with both coenzymes. 4. The thermodynamic data are discussed in relation to earlier data.  相似文献   

17.
Changes in the rigidity of the polymeric chain of phage λ double-strand DNA have been studied by laser correlation spectroscopy. It was shown that, as the ionic strength increases, the effect of the screening of the hydrodynamic interaction of the links of the polymeric chain specific for polymeric coils arises in a DNA solution. It is assumed that the screening occurs when the threshold of the overlapping of DNA coils is achieved. The overlapping of coils is the result of a previously observed significant rise of DNA coil size from abnormally small DNA coils in low ionic strength buffers (about 10−2 M Na+ or less) to maximum possible large coils in the 5SSC and 5SSC-like buffers. Further analysis of the far interlink interactions in linear lambda phage DNA coils in similar buffers at pH 7 and 4 confirms the earlier proposal about the role of H+ ions in the appearance of abnormally small DNA coils. The abnormal decrease in the DNA coil size in low ionic strength buffers is not a specific feature of λ phage DNA only.  相似文献   

18.
The principal aim of this study was to demonstrate the optimization and fine-tuning of quantitative and nonselective analysis of O-linked glycans released from therapeutic glycoproteins. Two approaches for quantitative release of O-linked glycans were examined: ammonia-based β-elimination and hydrazinolysis deglycosylation strategies. A significant discrepancy in deglycosylation activity was observed between the ammonia-based and hydrazinolysis procedures. Specifically, the release of O-glycans from glycoproteins was approximately 20 to 30 times more efficient with hydrazine compared with ammonia-based β-elimination reagent. In addition, the ammonia-based reagent demonstrated bias in the release of particular glycan species. A robust quantitative hydrazinolysis procedure was developed for characterization of O-glycans. The method performance parameters were evaluated. It was shown that this procedure is superior for quantitative nonselective release of O-glycans. Identity confirmation and structure elucidation of O-glycans from hydrophilic interaction chromatography (HILIC) fractions was also demonstrated using linear ion trap Fourier transform mass spectrometry (LTQ FT MS) with mass accuracy below 1 ppm.  相似文献   

19.
The mammalian oocyte is encased by a transparent extracellular matrix, the zona pellucida (ZP), which consists of three glycoproteins, ZPA, ZPB, and ZPC. The glycan structures of the porcine ZP and the complete N-glycosylation pattern of the ZPB/ZPC oligomer has been recently described. Here we report the N-glycan pattern and N-glycosylation sites of the porcine ZP glycoprotein ZPA of an immature oocyte population as determined by a mass spectrometric approach. In-gel deglycosylation of the electrophoretically separated ZPA protein and comparison of the pattern obtained from the native, the desialylated and the endo-beta-galactosidase-treated glycoprotein allowed the assignment of the glycan structures by MALDI-TOF MS by considering the reported oligosaccharide structures. The major N-glycans are neutral biantennary complex structures containing one or two terminal galactose residues. Complex N-glycans carrying N-acetyllactosamine repeats are minor components and are mostly sialylated. A significant signal corresponding to a high-mannose type chain appeared in the three glycan maps. MS/MS analysis confirmed its identity as a pentamannosyl N-glycan. By the combination of tryptic digestion of the endo-beta-galactosidase-treated ZP glycoprotein mixture and in-gel digestion of ZPA with lectin affinity chromatography and reverse-phase HPLC, five of six N-glycosylation sites at Asn(84/93), Asn268, Asn316, Asn323, and Asn530 were identified by MS. Only one site was found to be glycosylated in the N-terminal tryptic glycopeptide with Asn(84/93.) N-glycosidase F treatment of the isolated glycopeptides and MS analysis resulted in the identification of the corresponding deglycosylated peptides.  相似文献   

20.
The Chinese hamster ovary mutant MI8-5 is known to synthesize Man(9)GlcNAc(2)-P-P-dolichol rather than the fully glucosylated lipid intermediate Glc(3)Man(9)GlcNAc(2)-P-P-dolichol. This nonglucosylated oligosaccharide lipid precursor is used as donor for N-glycosylation. In this paper we demonstrate that a significant part of the glycans bound to the newly synthesized glycoproteins in MI8-5 cells are monoglucosylated. The presence of monoglucosylated glycans on glycoproteins determines their binding to calnexin as part of the quality control machinery. Furthermore, we point out the presence of Glc(1)Man(5)GlcNAc(1) in the cytosol of MI8-5 cells. This indicates that part of the monoglucosylated glycoproteins can be directed toward a deglycosylation process that occurs in the cytosol. Besides studies on glycoprotein degradation based on the disappearance of protein moieties, MI8-5 cells can be used as a tool to elucidate the various step leading to glycoprotein degradation by studying the fate of the glycan moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号