首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutants resistant to streptomycin, spectinomycin, neamine/kanamycin and erythromycin define eight genetic loci in a linear linkage group corresponding to about 21 kb of the circular chloroplast genome of Chlamydomonas reinhardtii. With one exception, all of these mutants represent single base-pair changes in conserved regions of the genes encoding the 16S and 23S chloroplast ribosomal RNAs. Streptomycin resistance can result from changes at the bases equivalent to Escherichia coli 13, 523, and 912-915 in the 16S gene, or from mutations in the rps12 gene encoding chloroplast ribosomal protein S12. In the 912-915 region of the 16S gene, three mutations were identified that resulted in different levels of streptomycin resistance in vitro. Although the three regions of the 16S rRNA mutable to streptomycin resistance are widely separated in the primary sequence, studies by other laboratories of RNA secondary structure and protein cross-linking suggest that all three regions are involved in a common ribosomal neighborhood that interacts with ribosomal proteins S4, S5 and S12. Three different changes within a conserved region of the 16S gene, equivalent to E. coli bases 1191-1193, confer varying levels of spectinomycin resistance, while resistance to neamine and kanamycin results from mutations in the 16S gene at bases equivalent to E. coli 1408 and 1409. Five mutations in two genetically distinct erythromycin resistance loci map in the 23S rDNA of C. reinhardtii, at positions equivalent to E. coli 2057-2058 and 2611, corresponding to the rib3 and rib2 loci of yeast mitochondria respectively. Although all five mutants are highly resistant to erythromycin, they differ in levels of cross-resistance to lincomycin and clindamycin. The order and spacing of all these mutations in the physical map are entirely consistent with our genetic map of the same loci and thereby validate the zygote clone method of analysis used to generate this map. These results are discussed in comparison with other published maps of chloroplast genes based on analysis by different methods using many of the same mutants.  相似文献   

2.
A novel alternative conformation, which involves an interaction between the 5' terminal and 915 regions (E. coli numbering), is proposed after a screening of compiled sequences of small subunit ribosomal RNAs. This conformation contains a pseudoknot helix between residues 12-16 and 911-915, and its formation requires the partial melting of the 5' terminal helix and the disruption of the 17-19/916-918 pseudoknot helix of the classical 16 S rRNA secondary structure. The alternate pseudoknot helix is proximal to the binding site of streptomycin and various mutations in rRNA which confer resistance to streptomycin have been located in each strand of the proposed helix. It is suggested that the presence of streptomycin favours the shift towards the alternate conformation, thereby stabilizing drug binding. Mutations which destabilize the novel pseudoknot helix would restrict the response to streptomycin.  相似文献   

3.
T Uchiumi  R Kominami 《The EMBO journal》1994,13(14):3389-3394
An anti-RNA autoantibody (anti-28S) was employed to identify structural and functional elements characteristic of a domain termed the 'GTPase center' in eukaryotic 28S ribosomal RNA. This antibody, an inhibitor of ribosome-associated GTP hydrolysis, has a unique property: it binds to the RNA domain of eukaryotes but not to that of prokaryotes. The antibody binding occurred in the presence of Mg2+ and protected from chemical modification three conserved bases (U1958, G1960 and A1990) and the base G1959 which is replaced by A in prokaryotic 23S rRNA (A1067 in Escherichia coli). In vitro substitution of G1959 to A drastically weakened the antibody binding, and the reciprocal substitution, A1067-->G of the E.coli domain conferred the binding ability. This suggests that the G base determines the specificity of antibody binding. The G1959 was also protected by the association of ribosomes with elongation factor EF-2. The result, together with protection of E.coli base A1067 by EFG [D.Moazed, I.M.Robertson and H.F.Noller (1988) Nature, 334, 362-364], suggests that the position of G1959 in eukaryotes and A1067 in prokaryotes constitutes at least part of the factor binding site irrespective of the base replacement during evolution.  相似文献   

4.
Starting with the lambda pRE-strain lambda ctr1 cy3008, which forms clear plaques, we have isolated two mutant strains, lambda dya2 ctr1 cy3008 and lambda dya3 ctr1 cy3008, that form plaques with very slightly turbid centers. The dya2 and dya3 mutations lie in the region of overlap between the PRE promoter and the ribosome recognition region of the cII gene, and have nucleotide alterations at positions -1 and +5 of pRE, and alterations in cII mRNA at -16 and -21 nucleotides before the initial AUG codon of the gene. Both mutations destabilize a stem structure that may be formed by cII mRNA, and dya2 also changes the sequence on cII mRNA that is complementary to the 3'-end of 16 S rRNA from 5'-UAAGGA-3' to 5'-UGAGGA-3'. --The dya2 and dya3 mutations, along with the ctr1 mutation, which destabilizes either of two alternate stem structures which may be formed by cII mRNA (these being more stable stem structures than the one affected by dya2 and dya3), were tested for their ability to reverse two cII-mutations that are characterized by inefficient translation of cII mRNA. These are cII3088, an A----G mutation four bases before the initial AUG codon, and cII3059, a GUU----GAU (Val2----Asp) second codon mutation. It was found that ctr1 completely reverses the translation defects of these two mutations, while dya2 partially reverses these translation defects. The dya3 mutation has no effect on translation efficiency under any condition tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The clinical severity of Osteogenesis Imperfecta (OI), also known as the brittle bone disease, relates to the extent of conformational changes in the collagen triple helix induced by Gly substitution mutations. The lingering question is why Gly substitutions at different locations of collagen cause different disruptions of the triple helix. Here, we describe markedly different conformational changes of the triple helix induced by two Gly substitution mutations placed only 12 residues apart. The effects of the Gly substitutions were characterized using a recombinant collagen fragment modeling the 63-residue segment of the alpha1 chain of type I collagen containing no Hyp (residues 877-939) obtained from Escherichia coli. Two Gly --> Ser substitutions at Gly-901 and Gly-913 associated with, respectively, mild and severe OI variants were introduced by site-directed mutagenesis. Biophysical characterization and limited protease digestion experiments revealed that while the substitution at Gly-901 causes relatively minor destabilization of the triple helix, the substitution at Gly-913 induces large scale unfolding of an unstable region C-terminal to the mutation site. This extensive unfolding is caused by the intrinsic low stability of the C-terminal region of the helix and the mutation induced disruption of a set of salt bridges, which functions to lock this unstable region into the triple helical conformation. The extensive conformational changes associated with the loss of the salt bridges highlight the long range impact of the local interactions of triple helix and suggest a new mechanism by which OI mutations cause severe conformational damages in collagen.  相似文献   

6.
Alterations of Eph receptor tyrosine kinases are frequent events in human cancers. Genetic variations of EPHB6 have been described but the functional outcome of these alterations is unknown. The current study was conducted to screen for the occurrence and to identify functional consequences of EPHB6 mutations in non-small cell lung cancer. Here, we sequenced the entire coding region of EPHB6 in 80 non-small cell lung cancer patients and 3 tumor cell lines. Three potentially relevant mutations were identified in primary patient samples of NSCLC patients (3.8%). Two point mutations led to instable proteins. An in frame deletion mutation (del915-917) showed enhanced migration and accelerated wound healing in vitro. Furthermore, the del915-917 mutation increased the metastatic capability of NSCLC cells in an in vivo mouse model. Our results suggest that EPHB6 mutations promote metastasis in a subset of patients with non-small cell lung cancer.  相似文献   

7.
The mutagenic epoxide metabolite of acrylonitrile, 2-cyanoethylene oxide (ANO), was used to treat human TK6 lymphoblasts (150 microM x 2 h ANO). A collection of hypoxanthine-phosphoribosyltransferase (hprt) mutants was isolated and characterized by dideoxy sequencing of cloned hprt cDNA. Base-pair substitution mutations in the hprt coding region were observed in 19/39 of hprt mutants: 11 occurred at AT base pairs and 8 at GC base pairs. Two -1 frameshift mutations involving GC bases were also observed. Approximately half (17/39) of the hprt mutants displayed the complete loss of single and multiple exons from hprt cDNA, as well as small deletions, some extending from exon/exon junctions. Southern blot analysis of 5 mutants with single exon losses revealed no visible alterations. Analysis of 1 mutant missing exons 3-6 in its hprt mRNA revealed a visible deletion in the corresponding region in its genomic DNA. The missing exon regions of 4 mutants (one each with exons 6, 7 and 8 loss and one mutant with a 17-base deletion of the 5' region of exon 9) were PCR amplified from genomic DNA and analyzed by Southern blot using exon-specific probes. The exons missing from the hprt mRNA were present in the genomic hprt sequence. DNA sequencing of the appropriate intron/exon regions of hprt genomic DNA from a mutant with exon 8 loss and a mutant exhibiting aberrant splicing in exon 9 revealed point mutations in the splice acceptor site of exon 8 (T----A) and exon 9 (A----G), respectively.  相似文献   

8.
A model system is developed to test oligonucleotide-directed mutations: T----C transition, T and C deletions (delta T and delta C), C insertion, double mutations (A----G, delta T), (T----C, A----G), and large oligonucleotide deletions (36 or 44 nucleotides). The system includes 9 variants of the phage M13 DNA carrying fragment of beta-galactosidase gene, and oligodeoxyribonucleotides partially noncomplementary to DNA sequence of this gene. Six variants are obtained by the site-localized mutagenesis, the other were described earlier. Induced mutations are easily tested by phenotype change of transformed bacteria (Lac+----Lac-); by formation or loss of the sites for BamHI and EcoRI restrictases; by DNA hybridization with 32P-labeled oligonucleotides; and by DNA sequencing by the Sanger method. The system is used to study the role of some factors, such as completeness of RF DNA synthesis, thermal stability of the oligonucleotide: DNA complex, quality of enzymes and substrates used in polymerase reaction, mutation type or the efficiency of mutagenesis. A number of unexpected mutations were observed in the course of oligonucleotide-directed mutagenesis. Lower yields of some mutants induced by oligonucleotides are shown to be due to the action of repair systems of bacteria.  相似文献   

9.
To enable the prenatal diagnosis of beta-thalassemia by direct detection of the mutant beta-globin genes, we have determined the spectrum of mutations causing this disease in Thailand. The techniques employed included a combination of synthetic oligonucleotide probe hybridization, direct sequencing of genomic DNA enzymatically amplified by the polymerase chain reaction, and cloning and sequencing of the beta-globin genes. A total of 116 beta-thalassemia genes from 78 Hb E/beta-thalassemia patients and from 19 homozygous beta-thalassemia patients were analyzed, and the mutation was characterized in 112/116 (97%) of them. Eleven mutations were found, of which four (-CTTT in codon 41/42, AAG----TAG in codon 17, C----T in position 654 of the IVS-2 region, and A----G in position -28 upstream of the beta-globin gene) accounted for 83%; two previously undescribed mutations have been identified. The spectrum of beta-thalassemia mutations is similar to that reported among the Chinese. However, within the Thai population itself, patients with homozygous beta-thalassemia show a wider spread of mutations in comparison with the Hb E/beta-thalassemia group, in whom the frameshift 41/42 mutation predominates at a frequency of 62%. This difference in distribution may reflect the difference in ethnic origin of the two groups. Characterization of these mutations should aid the planning of a prenatal diagnosis program for beta-thalassemia in Thailand.  相似文献   

10.
S Turner  H F Noller 《Biochemistry》1983,22(17):4159-4164
The reagent 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) was used to cross-link 23S rRNA from Escherichia coli under 50S ribosomal subunit reconstitution conditions. Following partial digestion of the RNA with ribonuclease T1, two-dimensional diagonal electrophoresis in denaturing polyacrylamide gels was used to isolate fragments derived from the cross-linked sites. These fragments were analyzed by digestion with ribonucleases T1 and A and their positions in the 23S RNA sequence identified. Fragment a1 (positions 1325-1426) is cross-linked to a2 (positions 1574-1623); fragment b1 (positions 1700-1731) is cross-linked to b2 (positions 1732-1753); and a cross-link is formed within fragment c (or c') (positions 863-916). In the latter case, the cross-link was located precisely, linking residues C867 and U913. All three HMT-mediated cross-links are consistent with a proposed secondary structure model for 23S RNA [Noller, H. F., Kop, J., Wheaton, V., Brosius, J., Gutell, R. R., Kopylov, A. M., Dohme, F., Herr, W., Stahl, D. A., Gupta, R., & Woese, C. R. (1981) Nucleic Acids Res. 9, 6167-6189].  相似文献   

11.
Summary Mutants were isolated from high-level streptomycin dependent strains of Escherichia coli B, which do not spontaneously revert to antibiotic independence. In these mutants the requirement for streptomycin was much reduced, but not abolished. The relieving of the antibiotic dependence was caused by qui (for quasi-independent) mutations. These were analogous to the ramA (rpsD) mutations which relieve the streptomycin requirement of other classes of streptomycin dependent mutants, but strains harboring qui mutations exhibited novel streptomycin phenotypes in conjunction with all rpsL (strA) alleles. RamA mutations increase ribosomal misreading; qui mutations either did not significantly alter misreading, or else reduced it.This work was done in partial fulfilment of the requirements for the Ph. D. degree in the Division of Medical Sciences of Harvard University  相似文献   

12.
13.
Gartner, T. K. (University of California, Santa Barbara), and E. Orias. Effects of mutations to streptomycin resistance on the rate of translation of mutant genetic information. J. Bacteriol. 91:1021-1028. 1966.-The effects of mutations to streptomycin resistance of independent origin upon the translation of suppressible mutant information were studied in an isogenic series of strains of Escherichia coli. The group of suppressible mutants included 1 mutation in the z gene of the lac operon of E. coli (O(0) (2) allele), 12 mutations distributed among the two rII cistrons of T4, and 13 mutations distributed among at least five cistrons of phage T7. It was concluded that the mutations to streptomycin resistance cause a significant decrease in the rate of translation of the suppressible codons, and that this effect is limited to a few types of codons.  相似文献   

14.
The interaction between streptomycin and ribosomal RNA   总被引:6,自引:0,他引:6  
The present study shows that a mutation in the 530 loop of 16S rRNA impairs the binding of streptomycin to the bacterial ribosome, thereby restricting the misreading effect of the drug. Previous reports demonstrated that proteins S4, S5 and S12 as well as the 915 region of 16S rRNA are involved in the binding of streptomycin, and indicated that the drug not only interacts with the 30S subunit but also with the 50S subunit. The relationship between the target of streptomycin and its known interference with the proofreading control of translational accuracy is examined in light of these results.  相似文献   

15.
16.
17.
A 443-base pair fragment (+622 to +1064) from the second intron of the human apolipoprotein B gene was shown to contain a tissue-specific enhancer when placed in front of an apolipoprotein B promoter-chloramphenicol acetyltransferase construct in transfection experiments. To identify potential regulatory mutations in this region of the gene, DNA from various subjects was examined for the presence of point mutations by means of chemical cleavage of mismatched heteroduplexes. An A----G substitution within the second intron of the gene at position +722 was identified in three unrelated subjects and confirmed by DNA sequencing. Although the base substitution was contained within a nuclear protein-binding site, as determined by DNase I footprinting, it did not appear to affect the protein/DNA interaction in its vicinity, as shown by gel retardation experiments. The single base substitution at position +722 abolishes a StyI restriction site, thus creating a StyI polymorphism. Using allele-specific oligonucleotides, we screened the DNA of 172 subjects for the presence of this polymorphism: two other subjects carrying the polymorphism were found. In each of the five unrelated subjects, the polymorphism was associated with the same haplotype.  相似文献   

18.
A functional pseudoknot in 16S ribosomal RNA.   总被引:37,自引:4,他引:33       下载免费PDF全文
T Powers  H F Noller 《The EMBO journal》1991,10(8):2203-2214
Several lines of evidence indicate that the universally conserved 530 loop of 16S ribosomal RNA plays a crucial role in translation, related to the binding of tRNA to the ribosomal A site. Based upon limited phylogenetic sequence variation, Woese and Gutell (1989) have proposed that residues 524-526 in the 530 hairpin loop are base paired with residues 505-507 in an adjoining bulge loop, suggesting that this region of 16S rRNA folds into a pseudoknot structure. Here, we demonstrate that Watson-Crick interactions between these nucleotides are essential for ribosomal function. Moreover, we find that certain mild perturbations of the structure, for example, creation of G-U wobble pairs, generate resistance to streptomycin, an antibiotic known to interfere with the decoding process. Chemical probing of mutant ribosomes from streptomycin-resistant cells shows that the mutant ribosomes have a reduced affinity for streptomycin, even though streptomycin is thought to interact with a site on the 30S subunit that is distinct from the 530 region. Data from earlier in vitro assembly studies suggest that the pseudoknot structure is stabilized by ribosomal protein S12, mutations in which have long been known to confer streptomycin resistance and dependence.  相似文献   

19.
Strains containing a series of restrictive and non-restrictive mutations in ribosomal protein S12 have been transformed with plasmids carrying the rrnB operon with mutations at positions 1409 and 1491 in 16S rRNA. The effects of the double-mutant constructs have been measured by growth rate, paromomycin and streptomycin sensitivity, resistance and dependence. The results demonstrate a functional interaction between the 1409-1491 region of rRNA and ribosomal protein S12.  相似文献   

20.
The region of mitochondrial DNA corresponding to the intron mutant M6-200 in Saccharomyces cerevisiae D273-10B has been isolated, and the nucleotide sequence of a 519 bp RsaI fragment has been determined. Three nucleotide substitutions were found at nucleotides +2650 (G----T), +2668 (G----A) and +2798 (A----G), all within the genetically defined location in the gene. Particular significance can be attributed to the first two changes (+2650 and +2668), that can be genetically isolated from the third substitution and, in addition, alter conserved sequence features detected in a study [(1982) Biochimie 64, 867-881] of fungal mitochondrial introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号