首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

2.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

3.
Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [35S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The cell-associated 35S-labeled proteoglycans were extracted from the MMC-enriched cell preparation by the addition of detergent and 4 M guanidine HCl and were partially purified by density gradient centrifugation. The isolated proteoglycans were of approximately 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. Analysis by high-performance liquid chromatography of chondroitinase ABC-treated 35S-labeled proteoglycans from these rat MMC revealed that the chondroitin sulfate chains consisted predominantly of disaccharides with the disulfated di-B structure (IdUA-2SO4----GalNAc-4SO4) and disaccharides with the monosulfated A structure (G1cUA----GalNAc-4SO4). The ratio of disaccharides of the di-B to A structure ranged from 0.4 to 1.6 in three experiments. Small amounts of chondroitin sulfate E disaccharides (GlcUA----GalNAc-4,6-diSO4) were also detected in the chondroitinase ABC digests of the purified rat MMC proteoglycans, but no nitrous acid-susceptible heparin/heparan sulfate glycosaminoglycans were detected. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain such a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched population of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leukemia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans as well as rat serosal mast cell heparin proteoglycans are all highly sulfated, protease-resistant proteoglycans.  相似文献   

4.
The sulfated glycosaminoglycans synthesized in the forelimb plates of rats on days 12, 13, 14, and 15 of gestation were characterized by their susceptibility to various glycosaminoglycan lyases. On days 12 and 13, heparan sulfate accounted for approximately 65% of the newly synthesized sulfated glycosaminoglycans. Small amounts of dermatan sulfate and chondroitin sulfates were also observed. On day 14, the relative amount of chondroitin 4-sulfate began to increase, there being a compensatory decrease in the amount of heparan sulfate. 35S-Sulfate-labeled material was extracted from day-13 forelimb plates with 4 M guanidine/HCl without proteolysis. Using ultracentrifugation on a sucrose density gradient, the extract was separated into two peaks: a light peak (L) mainly composed of heparan sulfate, and a faster-sedimenting peak (M) mainly composed of chondroitin sulfate. The cartilage-type proteoglycan (H) was first detectable on day 14 of gestation, indicating that chondrogenesis in rat forelimb plates starts on day 14 of gestation. In addition to these previously identified glycosaminoglycans or proteoglycans, we isolated an unknown component in the glycosaminoglycan preparations obtained from limb plates during these developmental stages. This component was not found in glycosaminoglycan preparations obtained either from the brain or tail of rat fetuses at the same stages.  相似文献   

5.
Biosynthesis of proteoglycans by isolated rabbit glomeruli   总被引:8,自引:0,他引:8  
Isolated rabbit glomeruli were incubated in vitro with 35SO4 in order to analyze the proteoglycans synthesized. Proteoglycans extracted with 4 M guanidine HCl from whole isolated glomeruli and from purified glomerular basement membrane (GBM) were analyzed by gel filtration chromatography. Two types of sulfated proteoglycans were found to be synthesized by rabbit glomeruli and these contained either heparan sulfate or chondroitin/dermatan sulfate glycosaminoglycan chains. These glycosaminoglycans were characterized by their sensitivity to selective degradation by nitrous acid or chondroitinase ABC, respectively. The major proteoglycan extracted from the whole glomeruli was a chondroitin/dermatan sulfate species (75%), while purified GBM contained mostly heparan sulfate (70%). The glycosaminoglycan chains were estimated to be about 12,000 molecular weight which is consistent with previous estimates for similar molecules extracted from the rat GBM.  相似文献   

6.
Abstract: To compare the loosely associated sulfated proteoglycans with those tightly bound to membranes, retinas from 14-day chick embryos were subjected to progressively disruptive techniques. The most easily removed proteoglycans were isolated from the medium in which the tissue was labeled with [35S]sulfate. On the average, 25% of the glycosaminoglycans were in the labeling medium, 39% were in proteoglycans extracted from the tissue in the balanced salt solution, 32% were in a 4 m -guanidinium chloride (GuCl) fraction, and 4% remained unextracted. These glycosaminoglycans contained, respectively, 28, 28, 40, and 4% of the incorporated [35S]sulfate. On the basis of electrophoretic mobility and TLC of chondroitinase digests, the ratio of 35S in chondroitin sulfate to that in heparan sulfate was 4–7 times higher in the medium and balanced salt extracts than in the GuCl extracts. In both extracts there was more 35S in chondroitin-6-sulfate than in chondroitin-4-sulfate. Dialysis of the extracts against 0.5 M-NaCl resulted in the precipitation of about 12% of the glycosaminoglycans in the saline extracts and about 40% in GuCl extract. These subfractions, which were relatively enriched in heparan sulfate, were largely soluble in dithiothreitol in 8 m -urea (DTT). Similarities between the proteoglycans in the medium and those extracted by balanced salt solutions suggest that the saline-extracted proteoglycans were for the most part loosely associated with cell surfaces or extracellular matrices, whereas the GuCl-extracted proteoglycans probably were bound to membranes.  相似文献   

7.
The synthesis of proteoglycans by aorta explants from rabbits with diet-induced atherosclerosis and controls was studied by 35S-incorporation. Proteoglycans were isolated under dissociative conditions from incubation medium and from arterial explants. Additionally, the tissue proteoglycans that were not extracted by 4 M guanidine-HCl were solubilized by digestion of the tissue by elastase in the presence of proteinase inhibitors. The residual tissue was hydrolyzed by papain and glycosaminoglycans were isolated. The atherosclerotic aorta tissue incorporated twice the amount of 35S into proteoglycans than observed for controls; in both groups about 70% of the label incorporated into the tissue was noted in the proteoglycans extracted by guanidine-HC;, while about 30% of the total 35S-labeled proteoglycans synthesized by the explants were found in the media. Atherosclerotic tissue incorporated 35S predominantly into chondroitin sulfate proteoglycans when compared to control tissue. The chondroitinase ABC-digestable proteoglycans that were extracted by guanidine-HCl from atherosclerotic tissues were of larger molecular size than those from control tissue, but the core proteins from these preparations were similar. The heparan sulfate proteoglycan that was obtained by dissociative extraction from atherosclerotic tissue had greater amounts of N-acetyl and lesser amounts of N-sulfate ester groups than the preparation from control tissue. Digestion of the tissue by elastase yielded heparan sulfate proteoglycan as the major constituent in both groups, although atherosclerotic tissue contained relatively small amounts of this proteoglycan. The residual tissue from both groups contained chondroitin sulfate and heparan sulfate as the major glycosaminoglycans with the latter showing a decrease with atherosclerosis. Atherosclerotic tissue secreted into the medium about two-fold more 35S-labeled proteoglycans with larger molecular size than control tissue; proteoglycans of the heparan sulfate and chondroitin sulfate types were the major constituents in the culture medium of both tissues. Thus, proteoglycans undergo both quantitative and qualitative changes in atherosclerosis, reflecting the enhanced smooth muscle cell activity. These changes are potentially important in modulating lipoprotein binding and hemostatic properties, as well as fibrillogenesis of the arterial wall.  相似文献   

8.
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes.  相似文献   

9.
Identification of chondroitin sulfate E in human lung mast cells   总被引:3,自引:0,他引:3  
Human lung mast cells (HLMC) enriched up to 99% purity by counter current elutriation and density gradient centrifugation were labeled with 35S-sulfate to determine cell-associated proteoglycans. The 35S-labeled proteoglycans were extracted by the addition of detergent and 4 M guanidine-HCl, and separated from unincorporated precursor by Sephadex G-50 chromatography. 35S-Proteoglycans chromatographed over Sepharose 4B with a Kav of 0.48. 35S-Glycosaminoglycans separated from the parent 35S-proteoglycans by beta-elimination and chromatographed over Sepharose 4B with a Kav of 0.63. Characterization of 35S-proteoglycans by chondroitin ABC lyase treatment revealed approximately 36% of the proteoglycan to be composed of chondroitin sulfates. Analysis by HPLC of component disaccharides liberated by chondroitin ABC lyase using an amino-cyano-substituted silica column indicated that the chondroitin sulfates consisted of the monosulfated A disaccharide (GlcUA----GaINAc4SO4) (75%) and the over-sulfated E disaccharide (GlcUA----GaINAc4,6-diSO4) (25%). Nitrous acid/heparinase-susceptible heparin proteoglycans accounted for approximately 62% of the total 35S-proteoglycans present in the HLMC. Proteoglycans remaining after exposure of the original proteoglycan extract to either heparinase or chondroitin ABC lyase were of similar size, suggesting that the majority of heparin and chondroitin sulfate glycosaminoglycans were on separate protein cores. Proteoglycans extracted from HLMC were protease insensitive. Hence, in addition to heparin proteoglycans, HLMC synthesize a hitherto unrecognized quantity of chondroitin sulfate E proteoglycans.  相似文献   

10.
The cell-associated proteoglycans synthesized by three dog mastocytoma cell lines were isolated and their structural features compared. The lines were propagated as subcutaneous tumors in athymic mice for over 25 generations. In primary cell culture, all three lines incorporated [35S]sulfate into high molecular weight proteoglycans which were heterogeneous in size and glycosaminoglycan content. Two lines, BR and G, synthesized both a heparin proteoglycan (HPG) and a chondroitin sulfate proteoglycan (ChSPG) in different proportions. The third line, C2, synthesized predominantly a ChSPG with little or no detectable heparin. Gel filtration of the 35S-labeled HPG and ChSPG from the BR line on Sepharose CL-4B in dissociative conditions (4 M guanidine, Triton X-100) yielded a major polydisperse peak (Kav = 0.22) accounting for 70% of 35S activity. Under aggregating conditions (0.1 M sodium acetate) on Sepharose CL-4B, the BR proteoglycans eluted in the excluded volume. Proteoglycans from lines G and C2 also eluted in the void volume under nondissociative conditions, however the C2 line yielded additional fractions of smaller hydrodynamic size (Kav = 0.81) suggesting the presence of intracellular proteoglycan cleavage products or incompletely processed proteoglycans. As assessed by dissociative chromatography on Sepharose CL-4B, proteoglycans from the BR line were resistant to proteinase cleavage under conditions which degraded a rat chondrosarcoma proteoglycan. For all lines, glycosaminoglycans released by pronase/alkaline-borohydride had molecular weights ranging from 20,000 to 50,000 on gel filtration. For line BR, 75% of 35S-labeled glycosaminoglycans were degraded to oligosaccharides by nitrous acid, and the remaining 25% were degraded by chondroitinase ABC. Corresponding percentages for line G were 89% and 11%, and for line C2, 2% and 98%. Paper chromatography of the chondroitinase digestion products from lines BR and C2 showed products corresponding to unsaturated standards delta Di-diSB and delta Di-diSE, derived from the disaccharides IdoUA-2-SO4----GalNAc-4-SO4 and GlcUA----GalNAc-4,6-diSO4 respectively, in addition to smaller amounts of monosulfated disaccharides. Glycans from lines C2 and BR contained small quantities of a trisulfated disaccharide which was degraded to delta Di-diSB upon incubation with chondro-6-sulfatase. The results demonstrate the simultaneous presence of heparin and polysulfated chondroitin sulfate in dog mast cells of clonal origin.  相似文献   

11.
Proteoglycans from three cloned, granulated lymphocyte cell lines with natural killer (NK) function (NKB61A2, HY-3, H-1) and one mast cell line (PT-18) were labeled with [35S]sulfate. [35S]proteoglycans were extracted in 1 M NaCl with protease inhibitors to preserve their native structure and were separated from unincorporated [35S]sulfate by Sephadex G-25 chromatography. [35S]proteoglycans from all four cell lines were chromatographed over Sepharose 4B and were found to have a similar range of m.w. The [35S]glycosaminoglycans from each cell line were then separated from parent proteoglycans by treatment with 0.5 M NaOH. The [35S]glycosaminoglycans from the three lymphocyte cell lines exhibited a similar m.w. as assessed by Sepharose 4B gel filtration, whereas the [35S]glycosaminoglycans from the mast cell line chromatographed as a smaller m.w. molecule. [35S )glycosaminoglycan charge characteristics were evaluated with DEAE C1-6B ion exchange chromatography. The consistency of the elution patterns was determined by using [35S]glycosaminoglycans obtained from radiolabelings of each cell line separated by 6 mo in culture. Each NK lymphocyte cell line reproducibly produced two distinct [35S]glycosaminoglycan chains that eluted in two regions well before the commercial heparin marker. The proportions of each chain were dependent upon the specific cell line. The mast cell line produced a single [35S]glycosaminoglycan chain, which eluted overlapping the internal commercial heparin marker, consistent with its higher charge characteristics. [35S]glycosaminoglycans from all cell lines were identified as chondroitin sulfates with the use of specific polysaccharidases. The NK lymphocyte glycosaminoglycans contained chondroitin 4-sulfate disaccharides. The mast cell glycosaminoglycans contained oversulfated disaccharides and chondroitin 4-sulfate disaccharides. Thus, each granulated NK lymphocyte cell line produced chondroitin sulfate glycosaminoglycans that were characteristic of that cell line and of different composition and less charge than those produced by cultured mast cells. These findings demonstrate that glycosaminoglycan profiles are useful biochemical markers in the characterization of diverse granulated cell lines including NK lymphocytes and mast cells.  相似文献   

12.
Human cloned 35S-labeled NK cells were disrupted by nitrogen cavitation, and their secretory granules were obtained by filtration through 5-micron and 3-micron membrane filters followed by Percoll density-gradient centrifugation. These granule preparations, which contained 35S-labeled chondroitin sulfate A proteoglycans, were sonicated and were analyzed for carboxypeptidase activity and tryptic serine esterase activity. A carboxypeptidase activity that digested angiotensin I to des-Leu-angiotensin I, Ile-His-Pro-Phe to Ile-His-Pro and Phe, and hippuryl-L-phenylalanine to hippuric acid and Phe was detected in the granules of these NK cells. As determined by cleavage of the tetrapeptide, the pH optimum of the carboxypeptidase was 7.0. As assessed by the cleavage of N-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLTe), the granule preparations also contained a serine esterase with trypsin-like specificity that had a pH optimum of 8.5. When the isolated secretory granules were disrupted and chromatographed on columns of Sepharose CL-2B in PBS, greater than 60% of the BLTe serine esterase activity and essentially all of the carboxypeptidase activity filtered as a macromolecular complex with approximately 8% of the 35S-labeled proteoglycans. Whereas treatment with 4 M urea or nonionic detergent failed to disrupt the macromolecular complex, the serine esterase activity was dissociated from the macromolecular complex in the presence of 3 M NaCl, demonstrating an ionic interaction with the proteoglycans. No difference was observed in the disaccharide composition of the chondroitin sulfate glycosaminoglycans of the 35S-labeled proteoglycans that were complexed with the enzymes as compared to those that were not complexed. These studies indicate that the secretory granules of human NK cells contain serine esterase activity and carboxypeptidase activity, both of which have neutral pH optima, and both of which are bound to protease-resistant chondroitin sulfate proteoglycans.  相似文献   

13.
Rabbit platelets were labeled in vivo with 35S for characterization of platelet sulfated glycosaminoglycan. When rabbit platelets were aggregated by ADP, sulfated proteoglycan was lost from the platelet surface although no release of granule contents occurred. The sulfated proteoglycan contained in the granules of platelets pretreated with ADP was subsequently released by treatment with thrombin. The 35S-labeled proteoglycan from both sources was isolated by gel filtration and the glycosaminoglycan portion of the proteoglycan was characterized as chondroitin 4-sulfate by examining the products of digestion with hyaluronidase, chondroitinase AC and ABC, and chondro-4- and 6-sulfatases; by identification of the hexosamine as N-acetylgalactosamine; by determination of a 1 : 1 : 1 molar ratio of N-acetylgalactosamine, uronic acid and inorganic sulfate; and by cetylpyridinium chloride cellulose chromatography. In these studies, the use of 35S-labeled proteoglycan made possible detection and quantification of much smaller amounts of material than would be possible with unlabeled material. Chondroitin 4-sulfate was the only sulfated glycosaminoglycan identified in the proteoglycan lost from the platelet surface during ADP-induced aggregation and in the proteoglycan released from the granules when the platelets were exposed to thrombin.  相似文献   

14.
Basophilic leukocytes from two patients with myelogenous leukemia were enriched to a purity of 10 to 45% by density gradient centrifugation. Ultrastructurally, these basophilic leukocytes contained segmented nuclei and granules with reticular patterns resembling those of normal basophils, and other granules with scroll and grating patterns resembling those of normal connective tissue mast cells. The 35S-labeled macromolecules isolated from these cells were approximately 140,000 m.w. Pronase-resistant proteoglycans bearing approximately 15,000 m.w. glycosaminoglycans. On incubation with chondroitinase ABC, nitrous acid, and heparinase, the 35S-labeled proteoglycans were degraded 50 to 84%, 16 to 43%, and 8 to 37%, respectively, indicating the presence of both chondroitin sulfate and heparin. As assessed by high performance liquid chromatography, the 35S-labeled chondroitin sulfate disaccharides liberated by chondroitinase ABC treatment were approximately 95% monosulfated chondroitin sulfate A and approximately 5% disulfated chondroitin sulfate E. The presence of heparin was confirmed by two-dimensional cellulose acetate electrophoresis of the 35S-labeled glycosaminoglycans. Cell preparations, enriched to 75% basophilic leukocytes by sorting for IgE+ cells, also synthesized 35S-labeled proteoglycans containing chondroitin sulfate and heparin. In one experiment, treatment of the cells with 1 microM calcium ionophore A23187 resulted in a 12% net release of both chondroitin sulfate and heparin containing 35S-labeled proteoglycans, a 57% net release of histamine, and the de novo generation of 8, 8, and 0.16 ng of immunoreactive equivalents of prostaglandin D2, leukotriene C4, and leukotriene B4, respectively, per 10(6) cells. Because only mast cells have been found to contain Pronase-resistant heparin proteoglycans, to generate PGD2 on cell activation, and to contain granules with scroll and grating patterns, these findings indicate that in some patients with myelogenous leukemia there are basophilic cells that possess properties of tissue mast cells.  相似文献   

15.
Previous studies established that brain microsomes catalyze the transfer of [35S]sulfate from 3'-phosphoadenosine 5'-phospho[35S]sulfate to an O-linked oligosaccharide chain of a membrane glycoprotein and sulfamino groups of a membrane-associated proteoheparan sulfate (R. R. Miller and C. J. Waechter (1979) Arch. Biochem. Biophys. 198, 31-41). A large fraction of the proteoheparan [35S]sulfate can be released by treating the enzymatically labeled membranes from calf brain with 1 M NaCl. The salt-extracted 35S-labeled proteoglycan has been partially purified by a combination of ion-exchange and gel filtration chromatography. Based on chromatographic analyses, the 35S-labeled proteoglycan labeled in vitro is proposed to be a family of proteoheparan [35S]sulfates having an average molecular weight estimated to be 55,000. Variation in the length of the 35S-labeled polysaccharide chains partially accounts for the differences in molecular size of the proteoheparan [35S]sulfates. Binding studies reveal that the intact proteoheparan [35S]sulfates, as well as the free 35S-labeled polysaccharides released by mild alkali treatment, rapidly reassociate with calf brain membrane preparations. The association with calf brain membranes is saturable and reversible. Consistent with the binding being a specific interaction, only iduronic acid-containing glycosaminoglycans inhibit the association of the 35S-labeled proteoglycan with calf brain membranes and facilitate the disassociation. Neither the binding of the 35S-labeled proteoglycan to membranes nor the displacement was affected by hyaluronic acid, chondroitin 4-sulfate, or chondroitin 6-sulfate. The binding of the enzymatically labeled proteoheparan sulfate is reduced by preincubating membranes with either trypsin or chymotrypsin, but not with neuraminidase or phospholipase D. These results suggest that at least one class of proteoheparan sulfates could be specifically bound to one or more brain membrane proteins. The results also suggest a role for iduronosyl residues, and perhaps the stereochemical relationship of the carboxyl group to the O-sulfate moiety at C-2, in the recognition process.  相似文献   

16.
Topical application of the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) to mouse skin causes marked changes in epidermal cell growth and differentiation. In the present studies we characterized the production of sulfated proteoglycans in the epidermis following treatment with TPA since these macromolecules are important structural and functional components of the tissue. We found that 35S-sulfate was readily incorporated into mouse epidermal proteoglycans. Sepharose CL-4B column chromatography revealed one major peak of sulfated proteoglycans in this tissue (Kav = 0.4-0.5). Approximately 65% of these proteoglycans were heparan sulfate and 10-20% chondroitin sulfate. Using specific monoclonal antibodies and flow cytometry, we found that the epidermal cells produced chondroitin-4-sulfate, chondroitin-6-sulfate and chondroitin-O-sulfate. Within 24 hr of application of TPA to mice, an increase in glycosaminoglycan content of the epidermis was observed. This was associated with a decrease in 35S-sulfate uptake into the tissue. Although TPA had no effect on the size or relative distribution of the epidermal sulfated proteoglycans, an increase in chondroitin-4-sulfate expression was observed in treated skin. Changes in the production of proteoglycans following TPA treatment may underlie structural alterations that occur in the epidermis during tumor promotion.  相似文献   

17.
Immunofluorescent staining of a pericellular matrix produced by cultured human embryonic skin fibroblasts showed a codistribution among fibronectin, heparan sulfate proteoglycans and part of the chondroitin sulfate in a fibrillar network. Isolated matrix in an “intact” form could be scraped off the dish after detergent solubilization of the cells. On centrifugation In cesium chloride density gradients, most sulfated glycosaminoglycans and matrix proteins remained associated and were recovered at a density of 1.34 g/cm3 (≥2 M CsCI). However, when 4 M guanidine hydrochloride was included in the gradient medium, the components dissociated, suggesting that the sulfated glycosaminoglycans are bound to matrix proteins by strong noncovalent linkages. Interactions between sulfated glycosaminoglycans produced by the fibroblasts and fibronectin could also be demonstrated by affinity chromatography on immobilized plasma fibronectin and by immunoprecipitation of fibronectin in conditioned culture medium, which resulted in a coprecipitation of the sulfated glycosaminoglycans. In these two systems, the fibronectin glycosaminoglycan bonds were broken at 0.2 M salt and were apparently weaker than the bonds responsible for the structural integrity of the matrix. These findings Implicate heparan and chondroitin sulfate proteoglycans as Integral components of the pericellular matrix fibers and suggest that the association of the proteoglycans with the fibronectin-procollagen matrix is stabilized by multiple molecular Interactions.  相似文献   

18.
Rat mesangial cells selected by long-term culture of glomeruli exhibited a hill and valley appearance in the confluent state and were stained with antibodies against vimentin and desmin, suggesting that they are smooth muscle-like mesangial cells. The glycoconjugates produced by the cells were metabolically labeled with [35S]sulfate and [3H]glucosamine and extracted with 4 M guanidine HCl containing 0.5% Triton X-100. The radiolabeled glycoconjugates were separated on DEAE-Sephacel and compared with those synthesized by glomeruli labeled in the same conditions. Of the three major sulfated glycoconjugates, sulfated glycoprotein (17% of the total 35S-labeled macromolecules), heparan sulfate proteoglycan (35%), and chondroitin sulfate proteoglycan (30%) synthesized by glomeruli, the cultured mesangial cells synthesized mainly chondroitin sulfate proteoglycan (more than 90%). After purification by CsCl density-gradient centrifugation, the chondroitin sulfate proteoglycan from the cell layer was separated on Bio-Gel A-5m into three molecular species with estimated Mr values of 230,000, 150,000, and 40,000-10,000, whereas that released into the medium consisted of a single species with an Mr of 135,000. In the beta-elimination reaction, the former two larger proteoglycans released chondroitin sulfate chains with Mr of an apparent 30,000 and the latter from the medium released the glycosaminoglycan chains with an Mr of 36,000. The Mr of the smallest proteoglycan from the cell layer was not significantly changed after beta-elimination, indicating that this species had only a small peptide, if any. Analysis with chondroitinase AC-II and ABC demonstrated that all the chondroitin sulfates were copolymers consisting of glucuronosyl-N-acetylgalactosamine (65-74%) having sulfate groups at position 4 (53-57%) or positions 4 and 6 (10-14%) of hexosamine moieties and iduronosyl-N-acetylgalactosamine (21-26%) having sulfate groups at position 4 (17-23%) or positions 4 and 6 (about 3%) of hexosamine moieties; namely chondroitin sulfate H type. These characteristics of the chondroitin sulfate H proteoglycans synthesized by the cultured mesangial cells were very similar to those of the proteoglycans synthesized by glomeruli. Thus, we conclude that most, if not all, of the glomerular chondroitin sulfate proteoglycans are synthesized by mesangial cells. The cultured mesangial cells were also found to synthesize hyaluronic acid at a similar level to chondroitin sulfate proteoglycan. Based on the characteristics of this glycosaminoglycan, we discuss the possible role of hyaluronic acid produced by mesangial cells.  相似文献   

19.
A high molecular weight chondroitin sulfate proteoglycan (Mr 240,000) is released from platelet surface during aggregation induced by several pharmacological agents. Some details on the structure of this compound are reported. beta-Elimination with alkali and borohydride produces chondroitin sulfate chains with a molecular weight of 40,000. The combined results indicate a proteoglycan molecule containing 5-6 chondroitin sulfate chains and a protein core rich in serine and glycine residues. Degradation with chondroitinase AC shows that a 4-sulfated disaccharide is the only disaccharide released from this chondroitin sulfate, characterizing it as a chondroitin 4-sulfate homopolymer. It is shown that this proteoglycan inhibits the aggregation of platelets induced by ADP. Analysis of the sulfated glycosaminoglycans not released during aggregation revealed the presence of a heparan sulfate in the platelets. Degradation by heparitinases I and II yielded the four disaccharide units of heparan sulfates: N,O-disulfated disaccharide, N-sulfated disaccharide, N-acetylated 6-sulfated disaccharide, and N-acetylated disaccharide. The possible role of the sulfated glycosaminoglycans on cell-cell interaction is discussed in view of the present findings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号