首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ribonuclease A derivative Npi-[13C1]carboxymethyl-histine-119 ribonuclease prepared by using [13C1]bromoacetate as alkylating reagent has been investigated with high resolution 13C NMR spectroscopy. In the 13C NMR spectra two carbon resonances of relatively high intensity appear which can be assigned to carboxyl groups attached to His-119 and Met-30, their intensity ratio being 10 : 1. The pH dependence of the carbon resonance of the carboxy-methyl group bound to the Npi of His-119 differs in the absence and presence of Cyd-2'-P, thus indicating that the catalytically inactive derivative does bind nucleotides. A mechanism of the alkylation reaction at pH 5.6 is proposed in which the epsilon-amino group of Lys-41 acts as the binding site for the carboxyl group of bromoacetate pushing the bromomethylene group towards the Npi of His-119 or the Ntau of His-12.  相似文献   

2.
The 13C nuclear magnetic resonance (NMR) spectra of ribonuclease A over the pH range 1-7 and between 6 and 70 degrees C reveal many of the details of its reversible unfolding. Although the unfolding may loosely be described as 'two-state', evidence is presented for intermediate unfolding stages at least 10 degrees C on either side of the main unfolding transition, particularly at low pH. The first residues to unfold are 17-24, in agreement with other results. The C-terminal region shows a steeper temperature dependence of its unfolding than does the main transition, which itself is shown to lead at all pH values to a semi-structured but internally flexible state which is far from being truly random-coil. This is confirmed by measurements of T1 and of nuclear Overhauser enhancement. Indeed, even at pH 1.1 and 70 degrees C there is evidence for considerable motional restriction of cysteine and proline residues, amongst others. The native protein has more variability of structure at low pH than at neutral pH, and also interchanges more rapidly with the semi-structured, denatured state.  相似文献   

3.
The chemical shifts of the carbons of the peptide alkaloids discarine-A, discarine-B, lasiodine-A, lasiodine-B, pandamine, pandaminine and hymenocardine have been assigned.  相似文献   

4.
In the 13C NMR spectrum of hemoglobin A carbonylated with 13CO, separate resonances can be distinguished at 207.04 ppm and 206.60 ppm (with respect to the 13C resonance of external tetramethyl-silane) for 13Co bound to the α and β chains of the hemoglobin tetramer. A study of the 13Co derivatives of the isolated α and β chains, and of the abnormal hemoglobin MIWATE which contains α chains which are in the met [Fe(III)] form and do not bind CO, has permitted an assignment of the high field (206.60 ppm) resonance to the β chain 13CO and the low field one to the α chain 13CO. The identification of these 13Co resonances permits a study of the differences in the chemistry of the α and β heme units in intact hemoglobin. Some results on the differences in the redox behavior of these chains are included.  相似文献   

5.
The 13C nuclear magnetic resonance (NMR) spectra of ribonuclease A over the pH range 1–7 and between 6 and 70°C reveal many of the details of its reversible unfolding. Although the unfolding may loosely be described as ‘two-state’, evidence is presented for intermediate unfolding stages at least 10°C on either side of the main unfolding transition, particularly at low pH. The first residues to unfold are 17–24, in agreement with other results. The C-terminal region shows a steeper temperature dependence of its unfolding than does the main transition, which itself is shown to lead at all pH values to a semi-structured but internally flexible state which is far from being truly random-coil. This is confirmed by measurements of T1 and of nuclear Overhauser enhancement. Indeed, even at pH 1.1 and 70°C there is evidence for considerable motional restriction of cysteine and proline residues, amongst others.The native protein has more variability of structure at low pH than at neutral pH, and also interchanges more rapidly with the semi-structured, denatured state.  相似文献   

6.
7.
8.
The proton decoupled 13C NMR (CMR) spectra of chlorophylls a and b enriched to 90% 13C have been obtained at 25.2 MHz and, despite the complexity of the spectra, many of the assignments of the 13C resonances have been made.  相似文献   

9.
10.
11.
The 13C NMR chemical shifts of 130 naturally occurring steroidal sapogenins and saponin derivatives published up to 1983 are listed and a number of methods for signal assignment are explained. The utility of 13C NMR spectral analysis for the structure elucidation of these compounds is discussed.  相似文献   

12.
A novel approach to carbon-13 (13C) enrichment of chloroplast membranes (and plant materials in general) is presented for 13C-nuclear magnetic resonance (13C-NMR) studies. The method minimizes the occurrence of spectral complications arising from 13C-13C couplings resulting from a statistical distribution of 13C within the molecule with low probability of encountering two 13C atoms adjacent to each other. This is achieved by growing the plants in light surrounded by an atmosphere containing 1/3rd 12CO2 and 2/3rd 13CO2, liberated by weak acid-treatment of a mixture of corresponding barium carbonate salts.  相似文献   

13.
14.
A 24 kDa protein was isolated from tartary buckwheat seeds by using chromatography of Superdex 75 gel filtration and Resource Q ion-exchange column. SDS-PAGE and Sephacryl S-200 gel filtration were used to provide information about the molecular mass of the protein purified from tartary buckwheat. The protein was composed of 215 amino acid residues and showed strong IgE binding activity in an ELISA test to the sera colleted from two patients allergic to buckwheat. These results suggested that the purified 24 kDa protein from tartary buckwheat seeds was an important functional protein and was relatively specific for buckwheat-allergic patients. It should be a very useful tool in the diagnosis of buckwheat allergy in the future.  相似文献   

15.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

16.
Three-quarters of the carbon-13 resonances of nuclei attached to the four haems of Desulfovibrio uulgaris ferricytochrome c3 are assigned. Preliminary analysis of their Fermi contact interactions shows that the shifts are directly related to the orientation of both of the axial histidine ligands in each case and the approach can therefore be used to obtain structural information in other cytochromes with bis-histidinyl coordination. The implications for the control of redox potential in cytochromes are discussed.  相似文献   

17.
C L Jackson  R G Bryant 《Biochemistry》1989,28(12):5024-5028
The carbon-13 NMR spectra of glycogen are reported by using the methods of magic-angle sample spinning and high-power proton decoupling to provide a dynamic report on the glucose monomer behavior as a function of hydration. Although the glycogen behaves as a typical polymer in the dry state, addition of water makes a significant difference in the spectral appearance. Water addition decreases the carbon spin-lattice relaxation times by 2 orders of magnitude over the range from 7% to 70% water by weight. The proton-carbon dipole-dipole coupling, which broadens the carbon spectrum and permits cross-polarization spectroscopy, is lost with increasing hydration over this range. By 60% water by weight, scalar decoupling methods are sufficient to achieve a reasonably high-resolution spectrum. Further, at this concentration, the carbon spin-lattice relaxation times are near their minimum values at a resonance frequency of 50.3 MHz, making acquisition of carbon spectra relatively insensitive to intensity distortions associated with saturation effects. Though motional averaging places the spectrum in the solution phase limit, the static spectrum shows a residual broader component that would not necessarily be detected readily by using high-resolution liquid-state experiments.  相似文献   

18.
In this paper we describe carbon-13 nuclear magnetic resonance results on 13C-enriched purified transfer RNAI(VAL) from from E. coli SO-187, a uracil requiring auxotroph. The organism was grown on uracil 90% 13C-enriched at the carbonyl C4 position. Transfer RNAI(Val) was purified from bulk tRNA by sequential chromatography on columns of BD cellulose, DEAE-Sephadex A-50 and reverse gradient sepharose 4B. Dihydrouridine, 4-thiouridine, and uridine 5-oxyacetic acid located at discrete positions in the polymer backbone were tentatively assigned in the highly resolved 25 MHz 13C-spectra. Chemical shift versus temperature plots reveal differential thermal perturbation of the ordered solution structure, evident in the large dispersion (ca 3-4 ppm) of the uridine C4 resonances. Over the range 26-68 degrees C, V in the anticodon displays the largest downfield shift. Whereas several uridine residues rapidly shift downfield between 50-68 degrees, one moves upfield beginning at 37 degrees. The results are qualitatively compared with proton NMR analysis of the three dimensional structure.  相似文献   

19.
T A Koerner  Jr  L W Cary  S C Li    Y T Li 《The Biochemical journal》1981,195(3):529-533
The 13C n.m.r. spectrum of Forssman hapten was obtained at 25.16 MHz in [3H] chloroform/[2H] methanol (1:1, v/v), using purified glycosphinogolipid from canine intestinal mucosa (glycolipid I). All amide, olefin, anomeric, intersaccharide glycosidic ether, amide linkage, methyl and many methylene resonances were resolved and assigned. Analysis of the anomeric region reveals the following pentaglycosylceramide structure as originally proposed [Siddiqui & Hakomori (1971) J. Biol. Chem. 246, 5766-5769]: GalNAc (alpha 1 leads to 3) GalNAc (beta 1 leads to 3) Gal (alpha 1 leads to 4) Gal (beta 1 leads to 1) ceramide. Analysis of the amide, olefin and methylene regions reveals no alpha-hydroxy fatty acyl group and less than or equal to 6 mol% unsaturated fatty acyl groups are present. Chemical-shift assignments are reported for the anomeric and glycosidic ether carbon atoms of intersaccharide-linked alpha-galactose and N-acetyl-alpha-galactosamine residues. Two rules are proposed for the assignment of the anomeric form of 1 leads to 3 and 1 leads to 4 linkages of galactose and N-acetylgalactosamine residues present in the glycone of glyco-conjugates. The present study emphasizes the importance of the anomeric "window" (80-120 p.p.m.) in studies of glycone structure.  相似文献   

20.
We report 67.8 MHz carbon-13 spin-lattice relaxation studies on [4-13C-uracil] labeled tRNAIVal purified from E. coli SO-187. Following 13C-enriched C4 carbonyl resonances from modified and unsubstituted uridines scattered throughout the polymer backbone enables us to determine dynamical features in both loop and helical stem regions. The experimental results have been analyzed in terms of a model of isotropic overall molecular reorientation. "Anomalous" residues for which the experimental data cannot be accounted for in terms of the model provide an assessment of local and regional properties. Thus, "native" tRNAIVal under physiological conditions of magnesium (10 mM) and temperature (20 degrees - 40 degrees C), exhibits the following characteristics: 1) uridines held rigidly in helical stems and tertiary interactions display correlation times for rotational reorientation of 15-20 nsecs, typical for overall tRNA motion; 2) uridines in loops such as the wobble residue uridine-5-oxyacetic acid (V34) are quite accessible to solvent; moreover V34 and another loop residue, D17, exhibit local mobility; 3) the tertiary interactions involving 4-thio uridine (s4U8) and A14 and ribothymidine (rT54) and A58 are weakened as temperature increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号